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Abstract. The periodic Anderson model (PAM) captures the essential physics of heavy fermion materials.
Yet even for the paramagnetic metallic phase, a practicable many-body theory that can simultaneously
handle all energy scales while respecting the dictates of Fermi liquid theory at low energies, and all in-
teraction strengths from the strongly correlated Kondo lattice through to weak coupling, has remained
quite elusive. Aspects of this problem are considered in the present paper where a non-perturbative local
moment approach (LMA) to single-particle dynamics of the asymmetric PAM is developed within the
general framework of dynamical mean-field theory. All interaction strengths and energy scales are encom-
passed, although our natural focus is the Kondo lattice regime of essentially localized f -spins but general
conduction band filling, characterised by an exponentially small lattice coherence scale ωL. Particular em-
phasis is given to the resultant universal scaling behaviour of dynamics in the Kondo lattice regime as an
entire function of ω′ = ω/ωL, including its dependence on conduction band filling, f -level asymmetry and
lattice type. A rich description arises, encompassing both coherent Fermi liquid behaviour at low-ω′ and
the crossover to effective single-impurity scaling physics at higher energies — but still in the ω/ωL-scaling
regime, and as such incompatible with the presence of two-scale ‘exhaustion’ physics, which is likewise
discussed.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 75.20.Hr Local moment in
compounds and alloys; Kondo effect, valence fluctuations, heavy fermions

1 Introduction

The paramagnetic metallic phase of heavy fermion ma-
terials provides a classic example of strongly correlated
electron physics [1,2]. Spin-flip scattering of itinerant
conduction electrons by essentially localized f -level elec-
trons leads to large effective masses and the low-energy
scale(s) symptomatic of any strongly correlated state. At
low energies and/or temperatures the lattice coherence is
paramount and the system is a Fermi liquid with well de-
fined quasiparticles and coherent screening of the f -level
spins; behaviour that crosses over for sufficiently high en-
ergies to essentially incoherent screening and the effective
single-impurity characteristics of the Kondo effect [1,2].

Handling theoretically the many sides and attendant
issues of this basic physics is of course another matter. The
paradigm here is the periodic Anderson model (PAM), the
natural lattice generalization of the Anderson impurity
model (AIM), in which each lattice site contains a corre-
lated f -level (with interaction U) hybridizing locally with
a non-interacting conduction band [1,2]; and a description
of which remains a major challenge, particularly in the
strongly correlated Kondo lattice regime of effectively lo-
calized f -spins but arbitrary conduction band filling. That
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reflects in large part the inherent difficulties in developing
a many-body theory that can capture non-perturbatively
the strong coupling regime of primary interest, satisfying
in particular the dictates of Fermi liquid theory at low
energies and yet capable of describing the problem on all
energy scales. Moreover, no matter how strong the correla-
tions, the Fermi liquid nature of the ground state implies
adiabatic continuity to the non-interacting limit; so the
same theory should also be able to handle the full range
of interaction strengths, including simple perturbative be-
haviour in weak coupling.

Our aim in the present paper is to develop an approach
to the paramagnetic phase of the PAM that meets the
above criteria, within the general framework of dynamical
mean-field theory (DMFT) [3–6]. The PAM has of course
been studied extensively within DMFT using an impres-
sive range of methods. Numerical techniques include the
numerical renormalization group (NRG) [7,8], quantum
Monte Carlo (QMC) [9–12] and exact diagonalization [13].
Theoretical approaches range from perturbation theory
in the interaction U [14,15], iterated perturbation the-
ory [16,17], the lattice non-crossing approximation [18,19]
and the average t-matrix approximation [20], to large-N
mean-field theory/slave bosons [21–23] and the Gutzwiller
variational approach [24,25]. Such techniques nonetheless
possess well known limitations [2]; be it an inability to
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handle strong correlations, failure to recover Fermi liq-
uid behaviour or even the non-interacting limit, unrealistic
confinement to the lowest energy scales and so on. NRG
aside, analogous comments apply to full scale numerical
methods. QMC for example is restricted to modest inter-
actions and relatively high temperatures, while finite-size
effects render exact diagonalization of limited value. These
remarks are certainly not intended to detract from the
many insights that have accrued from such approaches.
They are made simply to emphasise the desirability of
developing new, necessarily approximate theories for this
longstanding problem.

One such is pursued here, the local moment approach
(LMA) [26–35], the primary emphasis of which is on
single-particle dynamics and transport. Initially devel-
oped in the context of pure quantum impurity models
(AIMs) [26–33], the LMA is intrinsically non-perturbative
but technically quite simple, with the physically intuitive
notion of local moments introduced explicitly from the
outset. This leads naturally to an underlying ‘two-self-
energy’ description in which the essential correlated spin-
flip physics is readily captured; and corresponds physi-
cally to dynamical tunneling between initially degenerate
local moment configurations, which in lifting the spin-
degeneracy restores the local singlet symmetry charac-
teristic of the Fermi liquid state. The desiderata men-
tioned above are well met [26–33], all interaction strengths
and energy scales being encompassed, including the low-
energy requirements of Fermi liquid theory (although the
approach can also handle models with non-Fermi liquid
phases, see e.g. [31–33]). In particular, for the strong cou-
pling Kondo regime of the conventional metallic AIM,
LMA results for dynamics have been shown [28,29,33] to
give very good agreement with NRG calculations; and,
for static magnetic properties, with exact results from the
Bethe ansatz [30].

More recently, exploiting the fact that within DMFT
all correlated lattice-fermion models reduce to an effec-
tive quantum impurity hybridizing self-consistently with
the surrounding fermionic bath [3–6], the LMA has
been extended to encompass the particle-hole symmetric
PAM [34,35]. Here the system is ubiquitously a ‘Fermi
liquid insulator’ that evolves continuously with increas-
ing interaction strength from a simple non-interacting
hybridization-gap insulator to the strongly correlated
Kondo insulating state; with an insulating gap scale that
becomes exponentially small in strong coupling, such that
physical properties exhibit universal scaling in terms of
it (i.e. contain no explicit dependence on the ‘bare’ high-
energy material parameters, U etc, that enter the underly-
ing model Hamiltonian). A comprehensive description of
single-particle dynamics [34,35], electrical transport and
optical properties [35] of Kondo insulators arises, encom-
passing all relevant frequency (ω) and/or temperature (T )
domains; and exploitation of scaling in particular enables
direct, rather successful comparison to a range of experi-
ments [35].

Important though it is to the problem of Kondo insu-
lators the particle-hole symmetric PAM is of course spe-

cial, and the desirability of developing the LMA to en-
compass the asymmetric PAM and hence the generic case
of heavy fermion metals is self-evident. That is consid-
ered here, our specific focus being on T = 0 single-particle
dynamics. In addition to intrinsic interest in such per se,
and the fact that their ω-dependence exemplifies much
of the underlying physics of the problem, knowledge of
single-particle dynamics is well known [3–6] to be suffi-
cient within DMFT to determine q = 0 transport and
optical properties; which will be considered in a subse-
quent paper (in parallel to previous LMA work on Kondo
insulators [34,35]). The present paper is accordingly or-
ganised as follows. After appropriate background to the
PAM within DMFT (Sect. 2), formulated for an essen-
tially arbitrary lattice, implications of adiabatic continu-
ity and the Luttinger integral theorem [36] are considered
in Section 3; together with the quasiparticle forms for the
local conduction (c-) and f -electron spectra that Fermi
liquid theory requires be satisfied on the lowest energies
|ω| � ωL, where ωL is the low-energy scale characteristic
of the coherent Fermi liquid state. The LMA itself is con-
sidered in Section 4, first in general terms applicable to
an essentially arbitrary diagrammatic approximation for
the inherent two-self-energies, and including the issue of
symmetry restoration that is central to the approach. The
specific non-perturbative approximation to the LMA self-
energies implemented here is then discussed, together with
the practical method of solution such that the dictates of
both symmetry restoration and the Luttinger theorem are
satisfied.

Results arising are presented in Section 5, with a nat-
ural emphasis on the strongly correlated Kondo lattice
regime. An overview of dynamics on all energy scales is
first given (Sect. 5.1), encompassing both the ‘low’-energy
behaviour characteristic of the renormalized heavy elec-
tron state as well as non-universal energies on the order
of bare bandwidths or the interaction U . In addition to
illustrating the broad roles of asymmetry (in both the
conduction band and f -levels), and of lattice type, com-
parison is also made on this ‘all scales’ level both to re-
sults for single-particle dynamics of the AIM (in which
only a single correlated f -level is coupled to the conduc-
tion band), and to dynamics of the PAM arising at the
crude level of static mean-field. In Section 5.2 the mate-
rial dependence of the low-energy lattice coherence scale
ωL on bare model parameters is obtained, in the strong
coupling Kondo lattice regime where ωL is exponentially
small; and its behaviour compared in turn to correspond-
ing LMA results for the AIM Kondo scale ωK . The central
issues of scaling are considered in Section 5.3: the resul-
tant universal scaling behaviour of dynamics in terms of
ω′ = ω/ωL, on all ω′ scales, and including the depen-
dence of scaling dynamics on conduction band filling. At
low-ω′ the scaling spectra exhibit coherent Fermi liquid
behaviour, crossing over with increasing energy to log-
arithmically slow spectral tails. The latter are found to
be independent of both conduction band filling and lat-
tice type, and to have precisely the same scaling form
as those for an AIM; establishing thereby the crossover
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from low-energy coherent Fermi liquid behaviour to effec-
tive incoherent single-impurity physics on high-ω′ scales,
but still in the ω/ωL-scaling regime. A discussion of re-
sults obtained here in relation to the issue of two-scale
‘exhaustion’ physics [37,38] is given in Section 5.4; and
some concluding remarks are made in Section 6.

2 Background

The Hamiltonian for the PAM, Ĥ = Ĥc + Ĥf + Ĥhyb, is
given in standard notation by:

Ĥ =
∑
i,σ

εcc
†
iσciσ − t

∑
(i,j),σ

c†iσcjσ

+
∑
i,σ

(
εf + U

2 f †
i−σfi−σ

)
f †

iσfiσ + V
∑
i,σ

(
f †

iσciσ + h.c.
)

.

(2.1)

The first two terms describe the uncorrelated conduction
(c) band, Ĥc; with c-orbital site energies εc and nearest
neighbour hoppings tij = t, rescaled as t ∝ t∗/

√
Zc in the

large dimensional limit where the coordination number
Zc → ∞ [3–6] (with t∗ the basic energy unit). The sec-
ond term, Ĥf , describes the correlated f -levels, with site
energies εf and on-site repulsion Uff = U ; while the final
term, Ĥhyb couples the c- and f - subsystems via the local
hybridization matrix element V . Throughout the paper
the Fermi level is taken as the origin of energy, ωF = 0.

The model is thus characterized by four independent
‘bare’/material parameters, namely εc/t∗, V/t∗, εf/t∗ and
U/t∗ (with t∗ ≡ 1 taken throughout) – a huge param-
eter space in comparison e.g. to the Hubbard model. In
previous LMA work on the PAM [34,35] we have stud-
ied the particle-hole symmetric model appropriate to the
Kondo insulating state; for which εf = −U

2 and εc = 0,
with consequent occupancies nf =

∑
σ〈f †

iσfiσ〉 = 1 and
nc =

∑
σ〈c†iσciσ〉 = 1 for all U . Here we consider the

generic asymmetric case, encompassing heavy Fermion
metals (and with the symmetric PAM recovered as a par-
ticular limit). Particle-hole asymmetry itself enters the
problem in two ways [8] . (a) Conduction band asymme-
try, reflected in εc �= 0 which, as detailed below, specifies
the centre of gravity of the free (V = 0) conduction band
relative to the Fermi level. (b) f -level asymmetry which,
as for an impurity Anderson model [27], is embodied in
the parameter

η = 1 +
2εf

U
(2.2)

such that η = 0 corresponds to particle-hole symmetric f -
levels. The bare parameter set may thus be taken equiva-
lently as εc, V, U and η. We shall find this choice to be con-
venient in the following (and in fact necessary to describe
universal scaling behaviour in the Kondo lattice regime,
see Sect. 5.3).

While the LMA developed here encompasses all inter-
action strengths, the regime of primary physical interest

is of course that of the strongly correlated Kondo lattice
(KL): nf → 1, but with arbitrary conduction band fill-
ing nc. The underlying low-energy model, obtained from
the PAM to leading order in V 2, is a Kondo lattice
model (KLM); the KL regime of the PAM arising when
εf = −|εf | for |εf |/∆0 	 1 and (U − |εf |)/∆0 	 1, where
∆0 ≡ πV 2dc

0(0) (with dc
0(0) the free (V = 0) conduction

band density of states at the Fermi level). The approach
to the KL is not therefore unique, in that nf → 1 arises
for any asymmetry η ≡ 1 − 2|εf |/U ∈ [−1, 1] on progres-
sively increasing the interaction U . This is reflected in the
fact that the associated KLM contains in general both ex-
change and potential scattering contributions (the latter
vanishes as the asymmetry η → 0 and is omitted in most
studies of the KLM per se, which thus correspond to sym-
metric f -levels alone but with asymmetry retained in the
conduction band).

Granted even a dominant interest is the strong cou-
pling KL regime, the resultant bare parameter space of
the PAM (or KLM) nonetheless remains ‘large’, as above.
The KL regime is however characterized by a low-energy
lattice scale, ωL, diminishing progressively with increas-
ing interaction strength and expected to be exponentially
small in strong coupling [7–25]. This scale is of course it-
self a function of the bare material parameters; but that
dependence is a subsidiary issue in comparison to the ex-
pectation that physical properties of the PAM should ex-
hibit universal scaling in terms of ω/ωL and/or T/ωL, in a
manner largely independent of the bare parameters them-
selves. Understanding aspects of such scaling behaviour
will be a central theme of the present work.

Our specific focus in this paper is on local single-
particle dynamics of the T = 0 PAM, embodied in
Gf

ii(ω) ↔ Gf
ii(t) = −i〈T̂ (fiσ(t)f †

iσ)〉 and likewise Gc
ii(ω)

for the c-levels, with corresponding local spectra Dν
ii(ω) =

− 1
π sgn(ω)Im Gν

ii(ω) (and ν = c or f).
We begin with some remarks on the trivial limit V = 0

where (Eq. (2.1)) the f -levels decouple from the free con-
duction band. The latter is specified by its local propaga-
tor denoted by gc

0(ω), with corresponding density of states
(dos) dc

0(ω) (= N−1
∑

α δ(ω − εα) with e.g. εα ≡ εk for
a Bloch decomposable lattice); and it will prove useful to
denote by H(z) the Hilbert transform

H(z) =
∫ ∞

−∞
dε

ρ0(ε)
z − ε

(2.3)

for arbitrary complex z, where ρ0(ω) = dc
0(ω; εc = 0)

denotes the free conduction band dos for εc = 0 (see
Eq. (2.1)). The free c-electron propagator gc

0(ω) is then
given by

gc
0(ω) = H

(
ω+ − εc

)
(2.4a)

=
[
ω+ − εc − S0(ω)

]−1 (2.4b)

with ω+ = ω + i sgn(ω)0+ here and throughout, such that
dc
0(ω) = ρ0(ω − εc). Equation (2.4b) simply defines the

Feenberg self-energy [39,40] used below, with S0(ω) ≡
S[gc

0] a functional of gc
0 alone (since gc

0 = H(S+1/gc
0)) from
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equations (2.4). While our subsequent discussion holds for
an essentially arbitrary ρ0(ω) and hence band structure
embodied in dc

0(ω), specific results will later be given for
the Bethe lattice (BL) and hypercubic lattice (HCL); for
which within DMFT the normalized ρ0(ε) are respectively
a semi-ellipse and an unbounded Gaussian, given explic-
itly (t∗ = 1) by [3–6]:

ρ0(ε) =
2
π

[
1 − ε2

] 1
2 : |ε| < 1 BL (2.5a)

ρ0(ε) =
1√
π

exp
(−ε2

)
: HCL. (2.5b)

Since dc
0(ω) = ρ0(ω − εc) is simply a rigid shift of ρ0(ω)

(the free conduction band is non-interacting), conduction
band asymmetry is thus embodied in εc itself, with εc = 0
the symmetric limit.

We turn now to the full local Green functions for the
homogeneous paramagnetic phase of interest, for which
the Gν

ii(ω) ≡ Gν(ω) are site-independent. The essential
simplifying feature of DMFT – and the key aspect of it as
an approximation to finite-dimensional systems – is that
the f -electron self-energy is site-diagonal (momentum in-
dependent) [3–6]; and from straightforward application
of Feenberg renormalized perturbation theory [39,40] the
Gν(ω) are given by

Gc(ω) =
[
ω+ − εc − V 2

ω+ − εf − Σf(ω)
− S(ω)

]−1

(2.6a)

Gf (ω) =
[
ω+ − εf − Σf (ω) − V 2

ω+ − εc − S(ω)

]−1

(2.6b)

=
1

[ω+ − εf − Σf (ω)]

{
1 +

V 2

[ω+ − εf − Σf(ω)]
Gc(ω)

}
(2.7)

where Σf (ω) = ΣR
f (ω)−i sgn(ω)ΣI

f (ω) is the conventional
single self-energy (and the identity Eq. (2.7) follows from
Eqs. (2.6)). The Feenberg self-energy S(ω) ≡ S[Gc] is
moreover precisely the same functional of the full Gc(ω) as
it is of gc

0(ω) in the trivial limit of V = 0 (e.g. S = 1
4 t2∗Gc

for the BL). In consequence, Gc(ω) is given directly using
equations (2.6a, 4, 3) by

Gc(ω) = H(γ) (2.8)

where

γ(ω) = ω+ − εc − V 2

ω+ − εf − Σf(ω)
. (2.9)

For an arbitrary conduction band ρ0(ε), the approach
to the full interacting problem is clear in principle: given
the self-energy Σf (ω), and hence γ(ω) from equation (2.9),
Gc(ω) = H(γ) follows directly from Hilbert transforma-
tion and Gf (ω) from equation (2.7). But practice is an-
other matter: the hard part is to find a suitable approxima-
tion to the self-energy that can handle non-perturbatively
the strongly correlated physics of the KL regime, as well

as the weak coupling regime of interactions (which it-
self is readily handled by plain perturbation theory or
simple variants thereof, see e.g. [14–17]). It is this im-
passe the LMA seeks to break, via use of an underly-
ing two-self-energy description [26,27,34,35] as detailed
in Section 4. In addition of course the problem must be
solved iteratively and self-consistently, because an approx-
imate Σf (ω) will itself be in general a functional of self-
consistently determined propagators; that being a detail
(albeit an important one) to which we likewise turn in
Sections 4.3, 4.

2.1 Non-interacting limit

Before proceeding we comment briefly on the non-
interacting (NI) limit, U = 0, the local propagators for
which are denoted by Gν

0(ω) (or Gν
0(ω; εc, εf , V 2) if ex-

plicit dependence on the bare parameters is required) with
corresponding spectra Dν

0 (ω). Itself trivially soluble, the
importance of the NI limit and rationale for discussing
it, resides in its connection to the fully interacting prob-
lem via both Luttinger’s theorem [36] and the quasipar-
ticle behaviour of the full Dν(ω) at sufficiently low ω;
as considered in Section 3 below. The Gν

0(ω) are given
by equations (2.6–9) with Σf = 0 and γ(ω) → γ0(ω) =
ω+ − εc − V 2/[ω+ − εf ], with resultant spectra

Dc
0(ω) = ρ0(γ0) = ρ0

(
ω − εc − V 2

ω − εf

)
(2.10a)

Df
0 (ω) =

V 2

(ω − εf )2
ρ0

(
ω − εc − V 2

ω − εf

)
(2.10b)

and hence total band filling ntot = n0
c + n0

f given by

1
2
(
n0

c + n0
f

)
=
∫ 0

−∞
dω [Dc

0(ω) + Df
0 (ω)]

=
∫ −εc+1/ε̃f

−∞
ρ0(ε) dε + θ(−ε̃f ) (2.11)

where ε̃f = εf/V 2 (and θ(x) is the unit step function).
For band fillings ntot ∈ (0, 4) the system is generically
metallic, with a non-zero Fermi level dos Dν

0 (ω = 0). But
since γ0 diverges as ω → εf , the spectral functions in
the vicinity of ω = εf have the same behaviour as the
tails of the bare conduction band ρ0(ε). So for a typical
bounded ρ0(ε), e.g. the BL equation (2.5a), a hard spectral
gap opens up in the neighbourhood of εf ; while for an
unbounded ρ0(ε), e.g. the HCL, a (strictly) soft gap arises
at ω = εf . The system is of course insulating – a well
known hybridization gap insulator [41] – only if the Fermi
level (ω = 0) lies in the gap (excluding the trivial case of
wholly empty or full bands); and from equations (2.10, 11)
the sufficient condition for this to occur is readily seen to
be ntot = 2, i.e. half-filling, which holds also for the fully
interacting problem now considered.
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3 Adiabatic continuity, and quasiparticle
behaviour

On increasing the interaction U from zero the system re-
mains perturbatively connected to the NI limit; i.e. is a
Fermi liquid, a statement applicable both to the metal-
lic heavy Fermion (HF) state and the Kondo insulating
(KI) phase which likewise evolves continuously from the
non-interacting hybridization gap insulator [34,35]. This
adiabatic continuity requires that the Luttinger integral
vanish [2,36], i.e. that

IL = Im
∫ 0

−∞

dω

π

∂Σf(ω)
∂ω

Gf (ω) = 0. (3.1)

What may be deduced on entirely general grounds
from IL = 0 ? To that end note first that the local propa-
gators Gν(ω) (ν = c or f) may be expressed as

Gν(ω) =
∫ ∞

−∞
dε ρ0(ε)Gν(ε; ω) . (3.2a)

The c-electron Gc(ε; ω)(≡ N−1
∑

k[ω+−εc−εk−Σc(ω)]−1

with εk ≡ ε) follows directly from equations (2.8, 3) as

Gc(ε; ω) =
[
ω+ − εc − V 2

ω+ − εf − Σf(ω)
− ε

]−1

(3.2b)

while Gf (ε; ω) follows in turn using equation (2.7) as

Gf (ε; ω) =
[
ω+ − εf − Σf (ω) − V 2

ω+ − εc − ε

]−1

.

(3.2c)
And in terms of the Gν(ε; ω) note that the total band
filling ntot = nc + nf is given generally by

1
2 (nc + nf ) = Im

∫ ∞

−∞
dε ρ0(ε)

×
∫ 0

−∞

dω

π

[
Gc (ε; ω) + Gf (ε; ω)

]
. (3.3)

Now use equations (3.2a,c) in equation (3.1), IL = 0, to-
gether with the identity (from Eq. (3.2))

∂Σf(ω)
∂ω

Gf (ε; ω) =
[
Gc (ε; ω) + Gf (ε; ω)

]
− ∂

∂ω
ln
[(

ω+ − εc − ε
) (

ω+ − εf − Σf (ω)
)− V 2

]
and perform the ω-integration. This yields

1
2 (nc + nf ) =

∫ ∞

−∞

dε

π
ρ0(ε) g(ε) (3.4)

using only that ΣI
f (ω = 0) = 0, holding for both the HF

and KI states; where

g(ε) = tan−1
(
s
(
ε + εc + ε∗f

)
/
[
ε∗f (ε + εc) − V 2

])

(with s = 0+), and the renormalized level

ε∗f = εf + ΣR
f (ω = 0) (3.5)

is thus defined. The ε-integration in equation (3.4) is then
readily performed to give the desired result

1
2 (nc + nf ) =

∫ −εc+1/ε̃∗f

−∞
ρ0(ε) dε + θ

(−ε̃∗f
)

(3.6)

where ε̃∗f = ε∗f/V 2.
Equation (3.6) is equivalently a statement of

Luttinger’s theorem for the Fermi surface of the PAM,
for the relevant case of a local, momentum indepen-
dent self-energy appropriate to DMFT (the Fermi sur-
face is of course “large”, including f - and c-electrons,
see also [38]). Three points should be noted about equa-
tion (3.6). (i) First and most importantly we see it to be
exact, following directly from IL = 0 without further ap-
proximation. (ii) It amounts to a simple renormalization
of the NI limit result equation (2.11); being of just that
form but with the bare level ε̃f = εf/V 2 replaced by the
renormalized level ε̃∗f = [εf +ΣR

f (0)]/V 2; which is thus de-
termined via equation (3.6) for given filling ntot (and εc).
(iii) Equation (3.6) is the direct analogue for the PAM of
the Friedel sum rule for an AIM [2,42], which relates the
excess impurity charge (nimp) to the renormalized impu-
rity level ε∗imp, and which likewise follows directly from
IL = 0 for the impurity model; see also Section 4.5. In
physical terms that parallel is entirely natural, given the
connection to an effective impurity model which is inher-
ent to DMFT [3–6] (Eq. (2.6b) for Gf (ω) being of effec-
tive “single-impurity” form Gf (ω) = [ω+ − εf − Σf (ω) −
∆eff (ω)]−1 with an effective, ω-dependent hybridization
∆eff (ω) = V 2[ω+ − εc − S(ω)]−1). Finally, we add that
imposition of equation (3.6) as a self-consistency condi-
tion will play an important role in the LMA developed in
Section 4ff.

The second key implication of adiabatic continuity
is that the limiting low-ω behaviour of the propagators
Gν(ω) amount to a renormalization of the NI limit, which
is of course the origin of the renormalized band pic-
ture [2,43]. This follows simply by employing the leading
low-ω expansion of Σf (ω),

Σf (ω) ∼ ΣR
f (0) −

[
1
Z

− 1
]

ω (3.7)

with Z = [1 − (∂ΣR
f (ω)/∂ω)ω=0]−1 the quasiparticle

weight/ mass renormalization and ΣI
f (ω) neglected as

ω → 0 (since ΣI
f (ω) ∝ ω2 for the HF metals or vanishes

in the gap for the KI case). The low-ω behaviour of the
Gν(ω) then follow from equations (2.6) as

Gc(ω) ∼ Gc
0

(
ω; εc, Zε∗f , ZV 2

)
≡ G̃c(ω) (3.8a)

Gf (ω) ∼ Gf
0

(
ω; εc, Zε∗f , ZV 2

)
≡ ZG̃f (ω) (3.8b)

with Gν
0 the NI propagators (Sect. 2.1) and the quasi-

particle Green functions thus defined; with corresponding
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spectra

Dc(ω) ∼ ρ0


ω − εc − ZV 2(

ω − Zε∗f
)

 ≡ D̃c(ω) (3.9a)

Df (ω) ∼ Z2V 2(
ω − Zε∗f

)2 ρ0


ω − εc − ZV 2(

ω − Zε∗f
)



≡ ZD̃f (ω) (3.9b)

(ε∗f is the renormalized level, Eq. (3.5)). And the total
band filling ntot = nc + nf , calculated from the quasi-
particle propagators as 1

2ntot =
∫ 0

−∞ dω [D̃c(ω) + D̃f (ω)],
correctly satisfies the exact result equation (3.6).

Equations (3.8, 9) embody the quasiparticle behaviour
of the PAM, and have important implications for the scal-
ing behaviour of Dν(ω) in the strong coupling regime of
primary interest, as now considered. In the KL regime
where nf → 1, the quasiparticle weight Z becomes ex-
ponentially small (as considered explicitly in Sect. 5.2).
Defining a low-energy lattice coherence scale by (t∗ = 1)

ωL = ZV 2 (3.10)

the scaling behaviour of dynamics corresponds to consid-
ering finite ω′ = ω/ωL in the formal limit ωL → 0. Equa-
tions (3.9) then yield

Dc(ω) ∼ ρ0


−εc − 1(

ω′ − ε̃∗f
)

 (3.11a)

V 2Df (ω) ∼ 1(
ω′ − ε̃∗f

)2 ρ0


−εc − 1(

ω′ − ε̃∗f
)

 (3.11b)

where ‘bare’ factors of ω ≡ ωLω′ may be neglected, and
ε̃∗f = ε∗f/V 2. Moreover, in the KL regime, ε̃∗f is solely
dependent upon εc: from equation (3.11b) with 1

2nf =∫ 0

−∞ dωD̃f (ω) (D̃f (ω) = Df (ω)/Z),

1
2nf =

∫ 0

−∞
dω′ 1(

ω′ − ε̃∗f
)2 ρ0


−εc − 1(

ω′ − ε̃∗f
)



=
∫ −εc+1/ε̃∗f

−εc

dε ρ0(ε) + θ
(−ε̃∗f

)
(3.12)

whence ε̃∗f ≡ ε̃∗f (εc) as nf → 1 (and in addition sgn(ε̃∗f ) =
sgn(εc)).

Equations (3.11) embody the low-ω behaviour of the
single-particle spectra Dν(ω), in the KL regime where
nf → 1 but for arbitrary conduction band filling nc; re-
garding which the following important points should be
noted. (i) Equations (3.11) show that both Dc(ω) and
V 2Df (ω) (and not therefore Df (ω) itself) exhibit one-
parameter universal scaling in terms of ω′ = ω/ωL: with
no explicit dependence on the bare material parameters

U, η (or εf ) and V 2; and dependent solely upon εc (or
equivalently on the conduction band filling nc ≡ nc(εc),
see below) which itself determines the renormalized level
ε̃∗f ≡ ε̃∗f (εc) as above. (ii) Equations (3.11) provide ex-
plicitly the limiting behaviour that, as |ω′| = |ω|/ωL → 0,
must of necessity be recovered by any credible microscopic
theory; and direct comparison of LMA results to which
will be given in Section 5.3. Of equal importance however,
the simple results above are asymptotically valid only as
ω′ → 0, and prescribe neither the ω′-range over which
equations (3.11) hold nor the general ω′-dependence of
the scaling spectra – for which a real theory is required.
(iii) The particle-hole symmetric PAM discussed in [34]
(for which nf = 1 = nc) is just a particular case of the
above, in which εc = 0 and the renormalized level ε̃∗f = 0
(by symmetry); and where the low-energy lattice scale ωL

(Eq. (3.10)) is precisely the gap scale characteristic of the
Kondo insulating state [34,35]. Finally, scaling arguments
per se are obviously independent of how the low-energy KL
scale ωL ≡ ωL(εc, U, η, V 2) itself depends upon the bare
parameters; an issue of intrinsic interest that has long at-
tracted attention (see e.g. [8,21–25]) but which we believe
(as argued in Sect. 5) to be in large part a red herring in
understanding the expected connection between the KL
regime of the PAM, and single-impurity Kondo physics,
on suitably large energy and/or temperature scales.

Before proceeding to the LMA we mention one further
implication of equation (3.12) applicable to the KL regime:
together with the exact result equation (3.6) it gives

1
2nc =

∫ −εc

−∞
dε ρ0(ε) (3.13)

for the c-band filling. This shows (a) that nc ≡ nc(εc) is
indeed determined by εc as noted above; and (b) that the
resultant nc is just that for the free (V = 0) conduction
band, for which (Sect. 2) dc

0(ω) = ρ0(ω − εc) with 1
2nc =∫ 0

−∞ dω dc
0(ω). In physical terms this is natural, since from

equation (3.8a) the effective hybridization is ZV 2 = ωL,
exponentially small in the KL regime such that the net
conduction band filling is in effect independent of coupling
to the f -levels. We shall comment further on the latter in
Section 5.

4 Local moment approach

The discussion thus far has been couched in terms of the
single self-energy Σf (ω) which, via diagrammatic pertur-
bation theory in the interaction strength, provides the
conventional route to dynamics. A determination of the
propagators in this way is not however mandatory. Indeed
while fine in principle there are good reasons to avoid it;
stemming from the practical inability of conventional per-
turbation theory, or partial resummations thereof, to han-
dle the strongly correlated regime of primary interest. For
this reason the LMA [26–35] takes a different route to the
problem, employing instead a two-self-energy description
that is a natural consequence of the mean-field description



N.S. Vidhyadhiraja and D.E. Logan: Dynamics and scaling in the periodic Anderson model 319

from which it starts. Here we first consider the implica-
tions of such in general terms, independent of subsequent
details of implementation (Sects. 4.3, 4 ) and not confined
to the symmetric PAM considered hitherto [34,35].

There are three essential elements to the LMA [26–35].
(i) Local moments (‘µ’), regarded as the first effect of in-
teractions, are introduced explicitly and self-consistently
from the outset. The starting point is thus simple broken
symmetry static mean-field (MF, i.e. unrestricted Hartree-
Fock); containing two degenerate, locally symmetry bro-
ken MF states corresponding to µ = ±|µ| [34]. While
severely deficient by itself (see e.g. [26,27,31,34] and be-
low), MF nonetheless provides a suitable starting point for
a non-perturbative many-body approach to the problem.
(ii) To this end the LMA employs a two-self-energy de-
scription that follows naturally from the underlying two
local MF saddle points; with associated dynamical self-
energies built diagrammatically from, and functionals of,
the underlying MF propagators. (iii) The third and most
important idea behind the LMA is that of symmetry
restoration [27,28,32,34]: self-consistent restoration of the
broken symmetry inherent at pure MF level; and in con-
sequence, as discussed below, correct recovery of the local
Fermi liquid behaviour that reflects adiabatic continuity
in U to the non-interacting limit.

Within a two-self-energy description the local propa-
gators Gν(ω), which are correctly rotationally invariant,
are expressed formally as (cf. Eqs. (2.6))

Gν(ω) = 1
2

[
Gν

↑(ω) + Gν
↓(ω)

]
(4.1)

where (with σ = ↑/↓ or +/−)

Gc
σ(ω) =

[
ω+ − εc − V 2

ω+ − εf − Σ̃σ(ω)
− S(ω)

]−1

(4.2a)

Gf
σ(ω) =

[
ω+ − εf − Σ̃σ(ω) − V 2

ω+ − εc − S(ω)

]−1

(4.2b)
and S(ω) ≡ S[Gc] as usual (the reader is referred to [34]
for further, physically oriented discussion of these basic
equations). The f -electron self-energies Σ̃σ(ω) are conve-
niently separated as

Σ̃σ(ω) = U
2 (n̄ − σ|µ̄|) + Σσ(ω) (4.3)

where the first term represents the purely static Fock bub-
ble diagram which alone is retained at pure MF level (with
n̄ and |µ̄| given explicitly by equation (4.12) below); and
where the second term, Σσ(ω) = ΣR

σ (ω)− i sgn(ω)ΣI
σ(ω),

is the key dynamical contribution mentioned above (‘ev-
erything post-MF’).

Equations (4.1, 2) are the direct counterparts of the
single self-energy equations (2.6) (to which they would
trivially reduce if Σ̃σ(ω) ≡ Σf (ω) for each σ). For an arbi-
trary conduction band dos ρ0(ω) and any given {Σ̃σ(ω)},
they are likewise readily solved (cf. the discussion of
Eqs. (2.6a, 9)): defining

γσ(ω) = ω+ − εc − V 2

ω+ − εf − Σ̃σ(ω)
(4.4)

such that Gc(ω) = 1
2

∑
σ[γσ − S]−1 (Eqs. (4.1, 2a)), and

comparing to Gc(ω) = [γ − S]−1 (Eqs. (2.6a, 9)), the γσ’s
are related to the single γ(ω) (Eq. (2.9)) by

γ(ω) = 1
2 [γ↑(ω) + γ↓(ω)] +

[
1
2 (γ↑(ω) − γ↓(ω))

]2
S(ω) − 1

2 [γ↑(ω) + γ↓(ω)]
.

(4.5)
Given Σ̃σ(ω) and hence γσ(ω), this equation together with

S(ω) = γ − 1
H(γ)

(4.6)

(from Gc(ω) = [γ − S]−1 and Eq. (2.8)) may be solved
straightforwardly and rapidly in an iterative fashion; em-
ploying an initial ‘startup’ for S (typically S = 1

4g0(ω)
with g0 the free conduction band propagator with dos
ρ0(ω)). With S(ω) then known, the Gν(ω) follow directly
from equations (4.1, 2).

The conventional single self-energy Σf (ω) follows im-
mediately, essentially as a byproduct, because solution of
equations (4.5, 6) determines both S(ω) and γ(ω), whence
(from Eq. (2.9)) Σf(ω) = ω+ − εf −V 2[ω+ − εc − γ(ω)]−1

follows; which relation may be expressed equivalently as

Σf(ω) = 1
2

[
Σ̃↑(ω) + Σ̃↓(ω)

]

+

[
1
2 (Σ̃↑(ω) − Σ̃↓(ω))

]2
G−1(ω) − 1

2

[
Σ̃↑(ω) + Σ̃↓(ω)

] . (4.7)

Here G(ω) is the usual host/medium propagator [44],
given by G−1(ω) = [(Gf (ω))−1 + Σf (ω)] = [ω+ − εf −
V 2(ω+ − εc − S(ω))−1] with corresponding spectral den-
sity D(ω) = − 1

π sgn(ω)ImG(ω) (and which in physical
terms includes interactions on all sites other than the
local site i (G(ω) ≡ Gii(ω)) [44]). The conventional sin-
gle self-energy may thus be obtained directly given the
{Σ̃σ(ω)}, although obviously not vice versa, and the un-
derlying two-self-energy description may be viewed equiv-
alently as a means to obtain Σf (ω). The particular class of
diagrams retained in practice for the dynamical {Σσ(ω)}
(see Eq. (4.3)) will be detailed in Section 4.3; at present
none need be specified.

At the pure MF level of unrestricted Hartee-Fock, dy-
namical contributions to the Σ̃σ(ω) are of course neglected
entirely and Σ̃σ(ω) ≡ Σ̃0

σ = U
2 (n− σ|µ|) (with the MF lo-

cal f -level charge n ≡ n̄ and moment |µ| ≡ |µ̄| determined
in the usual simple fashion, Sect. 4.2). From equation (4.7)
the single self-energy at MF level is then

ΣMF
f (ω) = 1

2Un +

(
1
2U |µ|)2

G−1
0 (ω) − 1

2Un
(4.8)

(with G0(ω) the corresponding MF medium propagator,
whose Fermi level spectral density D0(ω = 0) is readily
shown to be non-zero). From this the basic deficiency of
pure MF is clear: if the local moment |µ| �= 0, then from
equation (4.8) the Fermi level ImΣMF

f (ω = 0) �= 0 and
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Fermi liquid behaviour is violated — wholly wrong, albeit
arising naturally because the resultant degenerate MF lo-
cal moment state is not perturbatively connected to the
non-interacting limit. While this problem would not occur
if |µ| = 0 were enforced a priori (restricted Hartree-Fock),
another one then arises at post-MF level; for from equa-
tion (4.8) the two- and single- self-energy descriptions then
coincide, with ΣMF

f (ω) = 1
2Un merely the static Hartree

contribution, producing a trivial energy shift to the non-
interacting propagators. Subsequent construction of the
dynamical Σf(ω) via conventional perturbation theory in
U employing these propagators, is equivalent to expand-
ing about the restricted Hartree-Fock saddle-point. But
when local moments can form at MF level this single-
determinantal saddle point, unlike its unrestricted MF
counterpart, is unstable to particle-hole excitations. It is
this in turn that is readily shown to underlie the familiar
divergences arising within conventional perturbation the-
ory if one attempts to perform the ‘natural’ diagrammatic
resummations (such as RPA) that one expects physically
are required to capture regimes of strong electronic cor-
relation, and the general inability to surmount which has
been a plague on all our houses [2,45].

The LMA seeks to surmount these problems by (a)
retaining the two-self-energy description, with the inher-
ent notion of local moments and essential stability of the
underlying MF state; while (b) incorporating many-body
dynamics into the associated self-energies {Σ̃σ(ω)} in a
simple and tractable fashion, and in such a way that Fermi
liquid behaviour is recovered at low-energies.

4.1 Symmetry restoration

This brings us to the key notion of symmetry restora-
tion (SR), now sketched briefly in the generic context
of heavy Fermion (HF) metals in the asymmetric PAM,
where it arises from the obvious question: under what
conditions on the {Σ̃σ(ω)} will the f -electron single self-
energy Σf(ω) exhibit Fermi liquid behaviour as ω → 0,
i.e. will ΣI

f (ω) ∼ O(ω2)? This may be answered simply
by employing a general low-frequency Taylor expansion
for the Σ̃σ(ω) in equation (4.7), along precisely the same
lines as in [27] for the Anderson impurity model. That
is merely a matter of algebra, and from it one finds the
necessary/sufficient condition for ΣI

f (ω) ∼ O(ω2) is that

Σ̃R
↑ (ω = 0) = Σ̃R

↓ (ω = 0). (4.9)

Moreover, with equation (4.9) satisfied then from equa-
tion (4.7) (i) all self-energies coincide at the Fermi
level, i.e.

ΣR
f (ω = 0) = Σ̃R

σ (ω = 0) (4.10)

for either spin σ; (ii) the leading low-ω behaviour of ΣR
f (ω)

is as in equation (3.7), with the quasiparticle weight Z =
[1 − (∂ΣR

f (ω)/∂ω)ω=0)]−1 given by Z−1 = 1
2 (Z−1

↑ + Z−1
↓ )

where Zσ = [1 − (∂ΣR
σ (ω)/∂ω)ω=0]−1 is thus defined;

and (iii) the quasiparticle behaviour embodied in equa-
tions (3.8) for the propagators Gν(ω) is thus recovered.

Equation (4.9), a condition upon the Σ̃R
σ (ω = 0) solely

at the Fermi level, is the SR condition that is central to
the LMA. It is quite general, being precisely the condi-
tion found for Anderson impurity models, whether metal-
lic [26,27] or pseudogap AIMs [31,32]; and likewise for the
particle-hole symmetric limit of the PAM [34] where it
guarantees persistence of the insulating gap with increas-
ing interaction strength, reflecting the ‘insulating Fermi
liquid’ nature of the Kondo insulating state. The gen-
eral consequences of SR are correspondingly common to
all these problems: In practice, equation (4.9) amounts
to a self-consistency equation for the local moment |µ|
(supplanting the pure MF condition for |µ|), see Sec-
tions 4.3, 4. Most importantly, Section 4.4 and [26–28,34],
imposition of SR as a self-consistency condition generates
a non-vanishing low-energy spin-flip scale ωm, manifest in
particular in the transverse spin polarization propagator,
whose physical significance is that it sets a non-vanishing
timescale, τ ∼ h/ωm, for the restoration of the broken
spin-symmetry endemic to the pure MF level of descrip-
tion; and which in the present context is equivalently the
low-energy Kondo lattice scale, with ωm ∝ ωL = ZV 2

(Eq. (3.10)).

4.2 Mean-field

Since the self-energies Σ̃σ(ω) are built diagrammatically
from the underlying MF propagators, it is appropriate
at this stage to comment briefly on MF itself; denoting
the MF propagators by gν

σ(ω) (and gν(ω) = 1
2

∑
σ gν

σ(ω)).
These follow from equations (4.2) as

gc
σ(ω) =

[
ω+ − εc − V 2

ω+ − ef + σx
− S(ω)

]−1

(4.11a)

gf
σ(ω) =

[
ω+ − ef + σx − V 2

ω+ − εc − S(ω)

]−1

(4.11b)

where S(ω) ≡ S[gc]; and we have written the purely static
εf +Σ̃σ(ω) ≡ εf +Σ̃0

σ as εf +Σ̃0
σ = ef−σx, with x = 1

2U |µ|
and ef given at pure MF level by ef = εf + 1

2Un. For any
given ef and x, explicit solution of equations (4.11) for
the MF propagators gν

σ(ω) ≡ gν
σ(ω; ef , x) follows directly

in one shot as described above (Eqs. (4.4–6)). And at pure
MF level, the local moment |µ| and charge n are found
from the usual MF self-consistency conditions |µ| = |µ̄|
and n = n̄; where |µ̄| ≡ |µ̄(ef , x)| and n̄ ≡ n̄(ef , x) are
given generally by

|µ̄| =
∫ 0

−∞
dω

[
df
↑(ω; ef , x) − df

↓(ω; ef , x)
]

(4.12a)

n̄ =
∫ 0

−∞
dω

[
df
↑(ω; ef , x) + df

↓(ω; ef , x)
]

(4.12b)

(such that the static Fock bubble diagram, appearing in
Eq. (4.3) for Σ̃σ(ω), is given generally by U

2 (n̄ − σ|µ̄|)).
In practical terms here it is obviously most efficient to
work with fixed ef and x: from equation (4.12a), |µ| = |µ̄|



N.S. Vidhyadhiraja and D.E. Logan: Dynamics and scaling in the periodic Anderson model 321

yields immediately U = 2x/|µ|, whence with n = n̄ equa-
tion (4.12b) likewise gives directly εf = ef − U

2 n. One can
of course choose equivalently to specify the bare param-
eters U and εf (or η = 1 + 2εf/U) from the beginning
— which simply requires iterative cycling of the pure MF
self-consistency equations — whence equations (4.12) de-
termine the pure MF values for x = 1

2U |µ| and ef . Re-
sults arising at pure MF level will be shown explicitly in
Section 5.1.

4.3 LMA: practice

Beyond the crude level of pure MF it is of course
the dynamical contributions to the self-energies, Σσ(ω)
(Eq. (4.3)), that are all important; and since the Σσ(ω)
are functionals of the underlying MF f -electron propaga-
tors {gf

σ(ω; ef , x)} themselves given by equation (4.11b),
the Σ̃σ(ω) ≡ Σ̃σ(ω; ef , x) thus depend upon ef and x.
Hence, independently of the particular class of diagrams
retained in practice for the dynamical self-energies, the
question arises as to how x = 1

2U |µ| and ef are deter-
mined in general (for any given set of bare model param-
eters)? To do so clearly requires two conditions. As dis-
cussed in Section 4.1, the symmetry restoration condition
equation (4.9) must of necessity be satisfied in a Fermi
liquid phase; and using equation (4.3) it may be cast as

ΣR
↑ (ω = 0; ef , x) − ΣR

↓ (ω = 0; ef , x) = U |µ̄(ef , x)| .
(4.13)

Likewise, as discussed in Section 3, adiabatic continuity
requires that the Luttinger integral theorem equation (3.1)
be satisfied, i.e.

IL(ef , x) = Im
∫ 0

−∞

dω

π

∂Σf (ω)
∂ω

Gf (ω) = 0 (4.14)

where the Luttinger integral itself depends necessarily on
ef and x. The essential point is obvious: these two equa-
tions are sufficient to determine x = 1

2U |µ| and ef in
the general case, and in effect supplant the correspond-
ing pure MF self-consistency conditions discussed above
(recall that since the broken symmetry MF state itself is
not adiabatically connected to the non-interacting limit,
MF fails in general to satisfy either symmetry restoration
or the Luttinger theorem). The optimal method for solv-
ing these equations will naturally depend on the particu-
lar approximation employed for the dynamical {Σσ(ω)};
but that is an algorithmic detail, to which we return
below. One further comment should be added here. It
is readily shown that the particle-hole symmetric PAM
considered in [34,35] (for which εf = −U

2 , εc = 0, see
Sect. 2), corresponds necessarily to ef = 0, and that the
Luttinger theorem equation (4.14) is automatically sat-
isfied by particle-hole symmetry. In that case solely the
symmetry restoration condition is therefore required to
determine x = 1

2U |µ| and hence the local moment, |µ|;
precisely as employed in previous LMA work on Kondo
insulators, [34,35].

Σσ(ω)
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Fig. 1. Diagrams retained in practice for the dynamical f -
electron self-energies Σσ(ω). Wavy line: interaction U . Dou-
ble line: renormalized host/medium propagator (see text). The
transverse spin polarization propagator is shown hatched.

While the preceding discussion is general, the final task
is to specify the class of diagrams contributing to the dy-
namical f -electron self-energies {Σσ(ω)} that we here re-
tain in practice. These have the same functional form em-
ployed in [34,35] for the symmetric PAM, and may be
cast as shown in Figure 1. The wavy line denotes the local
interaction U , the double line denotes the broken sym-
metry host/medium propagator G̃−σ(ω) specified below
(Eq. (4.16)); and the local f -level transverse spin polar-
ization propagator Π−σσ(ω), likewise specified below, is
shown as hatched. The diagrams translate to

Σσ(ω) = U2

∫ ∞

−∞

dω1

2πi
G̃−σ(ω − ω1)Π−σσ(ω1) (4.15)

and retention of them is motivated on physical grounds,
for they describe correlated spin-flip processes that are es-
sential in particular to capture the strong coupling Kondo
lattice regime: in which having, say, added a σ-spin elec-
tron to a −σ-spin occupied f -level on lattice site i, the
−σ-spin hops off the f -level generating an on-site spin-
flip (with dynamics reflected in the polarization propa-
gator Π−σσ(ω)). The −σ-spin electron then propagates
through the lattice in a correlated fashion, interacting fully
with f -electrons on any site j �= i (as embodied in the
host/medium G̃−σ(ω)); before returning at a later time to
the original site i, whence the originally added σ-spin is
removed (and which process simultaneously restores the
spin-flip on site i).

The renormalized f -electron medium propagator
G̃−σ(ω), which embodies correlated propagation of an f -
electron through the lattice, is given explicitly by (cf. its
counterpart G(ω) arising in Eq. (4.7))

G̃−σ(ω) =
[
ω+ − ef − σx − V 2

ω+ − εc − S(ω)

]−1

(4.16)

with corresponding spectral density D̃−σ(ω). Physically,
G̃−σ(ω) ≡ G̃ii;−σ(ω) includes interactions on all sites other
than i (on which interactions occur at MF level); and the
dependence of Σσ(ω) (Fig. 1) on which accounts in effect
for the hard-core boson nature of the spin-flips [34,46].
Diagrammatic expansion of G̃−σ(ω) in terms of MF prop-
agators and self-energy insertions Σ−σ(ω), and hence the



322 The European Physical Journal B

infinite set of diagrams implicit in Figure 1 for Σσ(ω), is
discussed further in [34,46] to which the reader is referred.

The local (site-diagonal) polarization propagator en-
tering equation (4.15) for Σσ(ω) is given at its simplest
level by an RPA-like particle-hole ladder sum in the trans-
verse spin channel, namely

Π−σσ(ω) = 0Π
−σσ

(ω)
[
1 − U 0Π

−σσ
(ω)
]−1

(4.17)

with the corresponding bare polarization bubble
0Π

−σσ(ω) ≡ 0Π
−σσ(ω; ef , x) expressed in terms of

the broken symmetry MF propagators {gf
σ(ω; ef , x)};

referred to in [34] as ‘LMAI’. [Alternatively, one may
readily renormalize the polarization bubbles in terms
of the host/medium propagators {G̃σ(ω)}, so-called
‘LMAII’ [34]. Results arising from the two are however
very similar [34], so we largely confine our attention
in the present paper to LMA I, excepting the explicit
comparison between the two made in Fig. 9 below.] The
0Π

−σσ(ω) and hence Π−σσ(ω)) are moreover readily
shown to be related by Π−σσ(ω) = Πσ−σ(−ω) [27,34];
whence only one such need be considered explicitly,
say Π+−(ω). Using this, and the Hilbert transform for
Π+−(ω), equation (4.15) for the dynamical self-energy
reduces to

Σσ(ω) = U2

∫ ∞

−∞

dω1

π
ImΠ+−(ω1)

[
θ(σω1)G̃−

−σ(ω + σω1)

+ θ(−σω1)G̃+
−σ(ω + σω1)

]
(4.18)

where G̃±
−σ(ω) =

∫∞
−∞ dω1D̃−σ(ω1)θ(±ω1)[ω − ω1 ±

i0+]−1 denote the one-sided Hilbert transforms such that
G̃−σ(ω) = G̃+

−σ(ω) + G̃−
−σ(ω).

4.4 Solution

We now summarise the preceding discussion from the
viewpoint of practical solution, and specify what we find
to be a numerically efficient algorithm to solve the basic
LMA-DMFT equations.

The self-energies {Σ̃σ(ω)} are given in their entirety
by equation (4.3), with the static Fock contributions
|µ̄(ef , x)| and n̄(ef , x) from equation (4.12). The dynam-
ical contribution to the self-energy, Σσ(ω), is given by
equation (4.18), with the polarization propagator therein
specified by equation (4.17); and the host/medium prop-
agator G̃−σ(ω) given by equation (4.16) (itself dependent
on the Feenberg self-energy S(ω) ≡ S[Gc], requiring as
such an iterative, self-consistent solution of the problem).
For given Σ̃σ(ω), equations (4.4–6) are the key equations
to solve (as there discussed) for Gc(ω) and S(ω); Gf (ω)
then follows directly from equations (4.1, 2b). In addi-
tion, centrally, both the symmetry restoration condition
for Σ̃σ(ω = 0) (Eqs. (4.10) or (4.13)) and the Luttinger
integral theorem equation (4.14) — or equivalently equa-
tion (3.6) — must also be satisfied; which conditions,

for given bare parameters {εc, V
2, εf , U}, determine both

x = 1
2U |µ| (and hence the local moment |µ|) and ef that

prescribe the underlying MF propagators. In this regard
we note for use below that equation (4.4) for γσ(ω) may
be written equivalently as

γσ(ω) = ω+ − εc − V 2

ω+ − ε∗f − [Σσ(ω) − Σσ(0)]
(4.19)

where ε∗f (Eq. (3.5)) is the renormalized level, ε∗f =
εf + ΣR

f (0) ≡ εf + Σ̃R
σ (0) (for either spin σ, as follows

directly from symmetry restoration Eq. (4.10)); and from
equation (4.3) we have used trivially that Σ̃σ(ω)−Σ̃σ(0) =
Σσ(ω) − Σσ(0).

The particular algorithm employed is now specified, for
an arbitrary conduction band ρ0(ε). In practice we choose
to work with specified εc, V

2, x and ef , with the bare pa-
rameters U and εf determined by solution; rather than
with εc, V

2, εf , U specified and x, ef then determined. The
two are of course entirely equivalent; we simply find the
former to be optimal in practice. So for any given εc, V

2, ef

and x = 1
2U |µ|, the algorithm is as follows:

(i) ‘Startup’. Equations (4.11) are first solved for the
MF propagators {gν

σ(ω; ef , x)} (ν = c or f), following the
procedure specified in equations (4.4–6). From this, the
polarization bubble 0Π

+−(ω) (and hence Π+−(ω)) fol-
lows directly, see equation (4.17). Σσ(ω) is given by equa-
tion (4.18), in which the host/medium propagator G̃−σ(ω)
is initially taken to be the MF gf

−σ(ω), thus generating the
‘startup’ Σσ(ω).

(ii) Symmetry restoration. The ω = 0 SR condition
equation (4.13) is now solved for the interaction U . This
simply requires varying U in equation (4.18) for Σσ(ω = 0)
until equation (4.13) is satisfied (the U -dependence of
Σσ(0) arising both from the trivial U2 prefactor in equa-
tion (4.18) and the explicit U -dependence of Π+−(ω),
see Eq. (4.17)). The local moment follows immediately,
|µ| = 2x/U .

(iii) Luttinger condition. With an input guess for
the renormalized level ε∗f , and hence γσ(ω) from equa-
tion (4.19), equations (4.5–6) are readily solved (as there
described) for Gc(ω) and S(ω); and Gf (ω) follows directly
from equations (4.1, 2b). The total band filling is trivially
computed from 1

2 (nc + nf ) =
∫ 0

−∞ dω[Dc(ω) + Df (ω)],
and compared to the Luttinger condition equation (3.6)
(in which ε̃∗f = ε∗f/V 2). The renormalized level ε∗f is then
simply varied until equation (3.6) is self-consistently sat-
isfied; the corresponding bare εf follows directly from
εf = ε∗f − Σ̃R

σ (0).
(iv) The resultant S(ω) is then used in equation (4.16)

to generate a new host/medium propagator G̃−σ(ω); and
hence from equation (4.18) a new Σσ(ω). Now return to
step (ii) and iterate until full self-consistency is reached.

We find the above algorithm to be efficient, converg-
ing typically after ∼ 6 iterations and computationally fast
on a modest PC. The outcome is a fully self-consistent
solution of the problem, with {εc, V

2, εf , U} and ef , x all
known (uniquely so in practice). If one wishes instead to
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work with a specified bare parameter set {εc, V
2, εf , U}

one simply repeats the above procedure, varying ef and
x = 1

2U |µ| until the desired εf , U are obtained. The
particle-hole symmetric PAM studied in [34,35], with εf =
−U

2 and εc = 0, is a special case of the above algorithm;
here ef = 0 (and likewise ε∗f = 0), and the Luttinger con-
dition is automatically satisfied so that step (iii) above is
redundant. Results arising from the fully self-consistent
solution will be discussed in the following sections.

Before proceeding we comment on the low-ω behaviour
of the transverse spin polarization propagator Π+−(ω),
given by equation (4.17) and entering the self-energy equa-
tion (4.18). As mentioned in Section 4.1, this is char-
acterised by a low-energy spin-flip scale denoted by ωm

(and defined conveniently as the location of the maxi-
mum in ImΠ+−(ω)). Such behaviour arises in all prob-
lems studied thus far within the LMA [26–35] and has a
common origin now briefly explained. If the local moment
|µ| had its pure MF value — i.e. if |µ| was determined
from the usual MF self-consistency condition (Sect. 4.2)
|µ| = |µ̄(ef , x = 1

2U |µ|)| with |µ̄(ef , x)| given generally by
equation (4.12a) — then it is straightforwardly shown (fol-
lowing e.g. [27,34]) that Π+−(ω) given by equation (4.17)
contains a pole at ω = 0 identically. In physical terms
this reflects simply the fact that the pure MF state is,
locally, a symmetry broken degenerate doublet, with zero
energy cost to flip an f -level spin. This is correct only in
the ‘free lattice’ limit of vanishing hybridization V where
the f -levels decouple from the conduction band, resulting
in a degenerate local moment state (a limit that we note
is recovered exactly by the LMA, non-trivially so from the
perspective of conventional perturbative approaches to the
PAM). Such ‘cost free’ spin-flip physics is not of course
correct for the Fermi liquid phase of the PAM that is adi-
abatically connected to the non-interacting limit. But nei-
ther does it occur in this case, for the existence of an ω = 0
spin-flip pole is readily shown to be specific solely to the
pure MF level of self-consistency (i.e. arises only if |µ| has
its pure MF value specified above). The key point is that
within the LMA the local moment |µ| is determined from
the symmetry restoration condition equation (4.10) (as in
step (ii) above), which itself reflects adiabatic continuity
(see Sect. 4.1). In consequence ImΠ+−(ω) contains not
an ω = 0 spin-flip pole, but rather a low-energy resonance
centred on a non-zero frequency ωm, whose physical con-
tent in setting the timescale for symmetry restoration has
already been noted in Section 4.1 (and which is equiva-
lently the low-energy Kondo lattice scale ωm ∝ ωL = ZV 2

(Eq. (3.10))).

4.5 Single-impurity model

For sufficiently low energies and/or temperatures the be-
haviour of the PAM is that of a coherent Fermi liquid [1,2],
reflecting the lattice periodicity and embodied in the lat-
tice coherence scale ωL. However with increasing energy
and/or temperature, it has of course long been known that
a crossover should occur to an incoherent regime of ef-
fective single-impurity physics [1,2]. For that reason it is

traditional in studies of the PAM/KLM to compare to cor-
responding results for the Anderson impurity (or Kondo)
model; in which only a single f -level is coupled to the
host conduction band, but otherwise with the same bare
parameters as the PAM itself, (εc, V

2, εf , U). Here we com-
ment briefly on the LMA for the relevant Anderson im-
purity model (AIM) itself [26,27], which will be used in
Section 5.

The local impurity Green function for the AIM, which
we continue to denote by Gf (ω), is given by Gf (ω) =
1
2

∑
σ Gf

σ(ω) (cf. Eq. (4.1)) where

Gf
σ(ω) =

[
ω+ − εf − Σ̃σ(ω) − ∆(ω)

]−1

. (4.20)

One-electron coupling between the impurity f -level and
the host is as usual embodied in the hybridization func-
tion ∆(ω) = ∆R(ω) − i sgn(ω)∆I(ω), and is given sim-
ply by ∆(ω) = V 2gc

0(ω); where gc
0(ω) is the free lattice

(V = 0) conduction electron propagator (Eq. (2.4)) with
corresponding dos dc

0(ω) = ρ0(ω−εc) (and ρ0(ω) given e.g.
for the hypercubic and Bethe lattices by Eqs. (2.5)). Note
then that the AIM hybridization is both ω-dependent and,
for generic εc �= 0, asymmetric in ω about the Fermi level
ω = 0 (in contrast e.g. to the commonly considered wide
flat-band AIM [2] for which ∆R(ω) = 0 and ∆I(ω) = con-
stant). This ω-dependence in ∆(ω) will of course be ap-
parent in AIM single-particle dynamics on non-universal
energy scales (as seen e.g. in Fig. 5 below). But in the
strong coupling Kondo regime of the AIM, characterised
by an exponentially small Kondo scale ωK → 0, univer-
sal scaling behaviour of dynamics arises in terms of ω/ωK

(see e.g. [26–28,33]). In this regime the ω-dependence of
∆(ω) is naturally immaterial, and only ∆(ω = 0) is rel-
evant. With that in mind, for later use we denote by
∆0 = ∆I(ω = 0) the local hybridization strength at the
Fermi level,

∆0 = πV 2ρ0(−εc). (4.21)

The self-energies {Σ̃σ(ω)} for the AIM in equa-
tion (4.20) are again given by equation (4.3); with n̄
and |µ̄| by equation (4.12), where now the MF spectral
densities df

σ(ω) ≡ df
σ(ω; ef , x) naturally pertain to the

MF propagators for the AIM, given by (cf. Eq. (4.11b))
gf

σ(ω) = [ω+ − ef + σx − ∆(ω)]−1. The dynamical con-
tributions to the self-energies, {Σσ(ω)} (Eq. (4.3)) are
likewise given [26,27] by equations (4.15) or (4.18), with
the self-consistent host/medium propagator G̃−σ(ω) ap-
propriate to the PAM now replaced simply by the AIM
propagator gf

−σ(ω). And the symmetry restoration con-
dition for the AIM is again given by equation (4.9) [27],
whence ΣR

f (0) = Σ̃R
σ (0) (for either spin σ) where Σf(ω)

here denotes the AIM single self-energy. Finally, with
ε∗imp = εf + ΣR

f (0) denoting the impurity renormalized
level (as for the PAM, Eq. (3.5)), the Luttinger integral
theorem IL = 0 (Eq. (3.1)) yields directly the Friedel sum
rule for the AIM [2,42]: ε∗imp + ∆R(0) = ∆0tan(π

2 nimp),
with nimp as usual the excess charge induced by addi-
tion of the impurity, and which is the AIM analogue of
equation (3.6) appropriate to the PAM. The LMA for the
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single-impurity model is readily implemented, as detailed
in [27], with both symmetry restoration and the Luttinger
theorem satisfied.

5 Results

We turn now to results arising from the LMA specified
above. Following consideration of dynamics on all energy
scales (Sect. 5.1), the dependence of the coherence scale
ωL on bare/material parameters is obtained in Section 5.2
and compared to corresponding results for the Kondo scale
ωK of the single-impurity Anderson model. The central
issues are considered in Section 5.3: the ω/ωL-scaling be-
haviour of single-particle spectra in the strong coupling
Kondo lattice regime, and their evolution from the low-
energy physics characteristic of the coherent Fermi liq-
uid through to the emergence at high energies of single-
impurity scaling behaviour. Finally, Section 5.4 discusses
our results in the context of Nozières’ problem of ‘exhaus-
tion’ [37,38] and recent work on that issue.

5.1 All scales overview

For obvious physical reasons the primary interest in the
PAM resides both in the strongly correlated Kondo lattice
regime, and on energies on the order of the coherence scale
ωL = ZV 2 and (essentially arbitrary) multiples thereof.
We begin however with an overview on all energy scales
— encompassing ‘band scales’ ω ∼ O(1) (1 ≡ t∗) and en-
ergies ω ∼ εf or εf + U characteristic of the f -electron
Hubbard satellites. In contrast to the low-energy sector,
dynamics here will naturally be non-universal: dependent
on essentially all bare material/model parameters, and lat-
tice specific. An overview is nonetheless instructive, show-
ing clearly the roles of asymmetry (in both the conduction
band and f -levels), and of the lattice type, as well as qual-
itative effects of depleting the conduction band filling. In
addition, it enables broad comparison both to dynamics
arising at the crude level of pure MF (Sect. 4.2) and to
corresponding results for the Anderson impurity model
(Sect. 4.5).

Figures 2 and 3 show spectra typical of metallic heavy
fermion behaviour in strong coupling: U � 5.1 (x = 1

2U |µ|
= 2.5), V 2 = 0.2 and εc = 0.3. In Figure 2, η =
1 + 2εf/U = 0 is taken — corresponding to symmetric
f -levels εf = −U

2 , but with asymmetry in the conduction
band (εc �= 0). To illustrate the effects of the lattice, the
c- and f -electron spectra are each shown for both the hy-
percubic lattice (HCL) and Bethe lattice (BL). In either
case the f -level charge nf � 0.99. The conduction band
fillings, likewise determined from spectral integration, dif-
fer little for the two lattices, nc � 0.64 (BL) and 0.69
(HCL) (each being within ∼ 2% of the asymptotic strong
coupling result Eq. (3.13) for nc).

The overwhelming intensity of the f -spectra shown in
Figure 2 is naturally in the Hubbard satellites, well sepa-
rated from the band scales ω ∼ O(1) (and in consequence
sharply distributed). Their peak maxima are symmetri-
cally positioned about the Fermi level — reflecting the fact

that the f -levels themselves are symmetric (η = 0) — and
largely unaffected by the presence of asymmetry in the
conduction band. The most important feature of the f -
spectra is of course the well known many-body resonance
at low energies. Its rich structure, considered in detail in
Section 5.3, is naturally not resolved here. What is how-
ever evident from Figure 2 is the relative unimportance
of the host lattice in determining the f -spectra on the all
scales level shown. This is in contrast to the local conduc-
tion electron spectra (top panels, Fig. 2). Here, aside from
weakly remnant Hubbard satellites whose intensity dimin-
ishes steadily with increasing U , the c-spectra are clearly
dominated by the asymmetrically distributed envelope of
the free (V = 0) conduction band spectrum, semi-elliptic
for the BL and Gaussian for the HCL. As mentioned at
the end of Section 3 this is physically natural, reflecting
that in the strongly correlated regime the conduction band
is very weakly coupled to the f -levels; albeit that such
coupling is of course the key feature of the problem on
low energy scales, where it leads to many-body structure
in the Dc(ω) (again barely visible on the scales shown).
In Figure 3, shown for the HCL with η = 0.4, there is
now particle-hole asymmetry in the f -levels as well as in
the conduction band; producing the additional spectral
signature of asymmetry in the positions of the Hubbard
satellites, but otherwise little change in broad terms.

Figures 2 and 3 also show direct comparison to the cor-
responding spectra at pure mean-field level (dashed lines).
At first sight, and on the all scales level shown, these ap-
pear to provide a reasonable first approximation to dy-
namics. That is not of course the case on the all important
low-energy scales that dominate the physics of the PAM in
strong coupling: MF clearly lacks any hint of the many-
body resonance in the f -spectra and its counterpart in
Dc(ω) — unsurprisingly given the absence of correlated
electron dynamics at this crude level — and in fact for
Df (ω) is seen to be qualitatively deficient for essentially
all |ω| � 1. For the c-electron spectra however, and again
excepting the lowest energies, MF is qualitatively reason-
able, reducing in strong coupling to precisely the free con-
duction band spectrum (as is readily shown directly from
Eqs. (4.11)). In addition, MF also captures qualitatively
the dominant Hubbard satellites in the f -electron spectra;
albeit that many-body broadening effects, arising from the
spin-flip dynamics included in the LMA, lead both to a
broadening and slight shift of the satellites (which can be
understood quantitatively in terms of the ω-dependence
of the dynamical self-energies Σσ(ω), although we do not
pursue that further here).

We consider now the qualitative effect of depleting
the conduction band filling nc, obtained by increasing εc

significantly. Figure 4 shows HCL spectra for εc = 1.5,
U � 7 (x = 3.5), η = 0.8 and V 2 = 1.25; for which
the resultant nc � 0.2 (and nf � 0.85). Save for the
large εc the remaining parameters have no special signif-
icance, and the large V 2 has simply been chosen so that
the resultant low-energy scale ωL (discussed in detail in
Sect. 5.2) is not so small as to be in effect invisible in
the figure shown. Depleting nc in this way has a marked
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Fig. 2. All scales view of LMA c- and f -electron spectra (solid lines): Dc(ω) and Df (ω) vs. ω (≡ ω/t∗), for Bethe lattice (left
panels) and hypercubic lattice (right panels). For U � 5.1 (x = 1

2
U |µ| = 2.5), V 2 = 0.2, εc = 0.3 and η = 1 − 2|εf |/U = 0.

Corresponding MF spectra are also shown (dashed lines).
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Fig. 3. Local c- and f -electron spectra for the HCL: Dc(ω) and Df (ω) vs. ω, shown for η = 1 − 2|εf |/U = 0.4 with remaining
parameters as in Figure 2. Dashed lines: corresponding MF spectra.

effect on the conduction electron spectra. In contrast to
Figures 2, 3 for εc = 0.3 — where the low-energy ‘an-
tiresonance’ in Dc(ω) is carved out of the free conduction
band envelope — Figure 4 shows that the low-nc conduc-
tion spectrum now contains a sharp low-energy resonance
lying in the tail of the free conduction band envelope,
akin to that appearing ubiquitously in the local f -spectra.
The essential origin of the resonance is readily seen from
the quasiparticle behaviour discussed in Section 3: from
the quasiparticle Dc(ω) equation (3.11a), the Fermi level
Dc(ω = 0) ∼ ρ0(−εc + 1/ε̃∗f) (with ε̃∗f = ε∗f/V 2 and ε∗f
the renormalized level); while for large εc = |εc|, equa-

tion (3.12) shows that −εc + 1/ε̃∗f → 0 as nf → 1. In con-
sequence, Dc(ω = 0) ∼ ρ0(ω = 0) is effectively pinned at
the Fermi level to its free lattice limit (with ρ0(0) = 1/

√
π

for the HCL marked explicitly in Fig. 4); and the width
of the resultant resonance is O(ωL), as again follows from
the quasiparticle Dc(ω), equation (3.11a). The low-energy
resonance arising for low nc in the c-electron spectrum
thus reflects directly the Fermi liquid nature of the ground
state.

In Figure 5, comparison is made between an f -electron
spectrum for the PAM for the HCL (solid line) and
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corresponding to nc � 0.2. The conduction band spectrum
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Fig. 5. All scales comparison of local f -electron spectra for the
PAM and Anderson impurity model: π∆0D

f (ω) vs. ω ≡ ω/t∗
(with ∆0 = πV 2ρ0(−εc)); for εc = 0.3, U � 1.3(x = 0.5), V 2 =
0.2 and η = 0. Solid line: PAM. Dashed line: AIM. Inset:
comparison on the resonance scales. The impurity spectrum
for εc = 0 is also shown on the main figure (dotted line, the
particle-hole symmetric AIM).

its counterpart for the single-impurity Anderson model
(dashed line); the bare parameters chosen for illustration
being η = 0 (symmetric f -level(s)), U � 1.3 (x = 0.5)
and V 2 = 0.2, εc = 0.3 (corresponding to a hybridiza-
tion strength, Eq. (4.21), of π∆0 = (πV )2ρ0(−εc) � 1).
The spectra, specifically π∆0D

f (ω), are compared on the
all scales level in the main figure (vs. ω ≡ ω/t∗); and on
the low-energy resonance scale in the inset. The main fig-
ure shows in addition the impurity spectrum for εc = 0
(with the same parameters otherwise), which is of course
the fully particle-hole symmetric AIM. The first point to
note here is obvious: excepting the low-energy sector, the
PAM and corresponding AIM spectra are qualitatively
very similar on the ‘all scales’ level (which is not specific

to the particular parameter set employed). This general
characteristic is in agreement with results from a numer-
ical renormalization group (NRG) study of the PAM and
AIM [8], see e.g. Figures 1, 4, 6 of [8]. Note further, in com-
parison to the fully particle-hole symmetric AIM (dotted
line), that for the moderate value of U chosen in Figure 5
the asymmetry in the conduction band (εc �= 0) shows
up weakly in the Hubbard satellites, both in their intensi-
ties and maxima (which are not quite symmetrically po-
sitioned about the Fermi level).

It is naturally in the low-energy behaviour that the
PAM and AIM spectra differ significantly, as evident in the
inset to Figure 5. In particular, for the PAM the lattice
coherence generates a pseudogap above the Fermi level,
as indeed expected from the quasiparticle behaviour of
Df (ω), equation (3.11b) (albeit that the relative weakness
of the pseudogap here reflects the moderate U considered,
see Sect. 5.3). However even at low energies one does not
learn much from comparison of PAM and AIM dynamics
on an absolute scale, e.g. vs. ω ≡ ω/t∗, and for a given set
of bare parameters {εc, V

2, U, η}. For the parameters cho-
sen in Figure 5, it so happens that the low-energy scales
for the PAM and AIM are very similar (with quasiparti-
cle weights Z ≈ 0.1). But that is not generically so: as
discussed in Section 5.2 the PAM lattice coherence scale
and the Kondo scale for the AIM will in general be quite
different for given bare parameters [8,23] (they are after
all physically distinct models), whence comparison of the
two on an absolute scale is barely informative. What is re-
quired by contrast — particularly in strong coupling where
there is a pristine separation between asymptotically van-
ishing low-energy scale(s) and non-universal scales such as
∆0, t∗ ≡ 1 or U — is comparison of the universal scaling
behaviour of the two models; in which the dependence
of the respective low-energy scales on bare parameters is
thereby eliminated and the underlying scaling behaviour
exposed. This we believe is the most convincing (and pos-
sibly only) way to establish a connection between the high-
energy scaling behaviour of the PAM/KLM and underly-
ing single-impurity physics. That key issue is considered
in Section 5.3.

5.2 Low-energy scale

We first consider briefly how the low-energy coherence
scale for the PAM, ωL = ZV 2 (Eq. (3.10)), is found within
the LMA to depend on the bare/material parameters (εc,
V 2, U, η) in the strong coupling Kondo lattice regime
where nf → 1; and how it compares to the Kondo scale
for the corresponding AIM, ωK ≡ ZimpV

2 (with Zimp

denoting the quasiparticle weight for the single-impurity
model). The scales ωL and ωK are indeed found to be
exponentially small in strong coupling (as opposed to al-
gebraically small, such as arises using perturbation the-
ory in U or variants thereof such as modified (iterated)
perturbation theory [14–17]); leading thereby to the clean
scale-separation that is a prerequisite to the scaling con-
siderations of Section 5.3. The essential findings here, dis-
cussed below, agree with the NRG study of [8] and re-
sults obtained from the large-N/slave boson mean-field
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(SBMF) approximation [23]: (a) That the scales ωL and
ωK are found to have the same exponential dependence
on the bare parameters, but (b) depend very differently
on the conduction band filling nc; the lattice scale ωL be-
ing enhanced relative to its single-impurity counterpart as
nc → 1, but strongly diminished for low nc.

The material dependence of the AIM Kondo scale
ωK(∝ ωm) arising within the LMA can be obtained ana-
lytically in strong coupling by direct analysis of the sym-
metry restoration condition equation (4.13). That was
considered explicitly in [27] for the case of a general
impurity (with f -level asymmetry embodied as usual in
η ≡ 1 − 2 |εf |

U ), but a symmetric host band. It is straight-
forward to extend the analysis of [27] to include the ω-
dependence of the hybridization ∆(ω) arising from an
asymmetric host conduction band (which as anticipated
in Section 4.5 does not affect the final answer). Noting
that the AIM hybridization strength is given by ∆0 =
πV 2ρ0(−εc) (Eq. (4.21)), this yields

ωK ∝ exp
(
− U

8V 2ρ0(−εc)
(1 − η2)
f(η2)

)
(5.1)

(with the proportionality determined simply by a high-
energy cutoff [27]); where f(η2) = 1

2 [1 +
√

(1 − η2)] (∈
[1, 1

2 ] for asymmetries |η| ∈ [0, 1] relevant to the Kondo
regime). The exchange coupling J for the corresponding
Kondo model, obtained from the AIM in strong coupling
by a Schrieffer-Wolff transformation [2], is given by J =
V 2[ 1

|εf | +
1

U−|εf | ] ≡ 4V 2/[U(1−η2)]; whence equation (5.1)
is equivalently ωK ∝ exp(−1/[2ρ0(−εc)Jf ]). As pointed
out in [27] the exponent here differs in general by the
factor f(η2) from the exact result for the Kondo model,
being as such exact only for the symmetric case where η =
0 (although note that f is slowly varying in η, lying e.g.
within 10% of unity for η < 0.6). That notwithstanding
we regard recovery of an exponentially small Kondo scale,
close to the exact result in an obvious sense, as non-trivial;
and add that provided the scale is indeed exponentially
small, so that a clean separation of low (universal) and
non-universal energies arises, its precise dependence on
the bare parameters is in essence irrelevant to the issue
of scaling in terms of ω/ωK (as seen in [27] for the AIM
itself).

For the PAM the coherence scale ωL is likewise ob-
tained from solution of the symmetry restoration condi-
tion equation (4.13), in this case numerically following
the procedure detailed in Section 4.4 (and with ωL found
to be proportional to the spin-flip scale ωm as noted in
Sect. 4.4). In the strong coupling Kondo lattice regime ωL

is again found to be exponentially small, with its exponen-
tial dependence on the bare parameters the same as ωK

for the AIM. This is illustrated in Figure 6 (for the BL)
where, with η = 0 and for εc = 0.1 and 0.6, the resultant
ωL is plotted on a logarithmic scale vs. U/V 2; and com-
pared to the counterpart ωK results for the AIM itself. For
given εc the asymptotic PAM and AIM curves are paral-
lel, indeed indicating common U/V 2-dependence for the
exponents of the two scales. When plotted vs. U/V 2 as in
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Fig. 6. PAM coherence scale ωL on a log-scale vs. U/V 2; for
the BL with η = 0, εc = 0.1 (solid circles) and εc = 0.6 (solid
squares). Comparison is made to corresponding results for the
AIM Kondo scale ωK : εc = 0.1 (open circles) and εc = 0.6
(open squares). ωL is enhanced relative to ωK for εc = 0.1
but diminished for εc = 0.6 (see also Fig. 7). The straight
lines indicate the exponents given by equation (5.1), found for
both models. Inset: same results now shown vs. U/∆0 (with
∆0 = πV 2ρ0(−εc)). The strong coupling gradients are then
common for different εc, as implied by equation (5.1).
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Fig. 7. PAM coherence scale ωL vs. nc, for the BL with
U/V 2 = 23 and η = 0 (solid circles), compared to the AIM
Kondo scale ωK (open circles). Inset: ωL/ωK vs. nc.

the main figure, the slopes for different εc clearly differ;
but when shown vs. U/∆0 = U/(πV 2ρ0(−εc)) as in the
inset to Figure 6, the gradients for different εc are now
common in strong coupling, as implied by the exponen-
tial dependence of equation (5.1). The dependence of the
exponents on the f -level asymmetry, as in equation (5.1),
may likewise be verified by varying η. And the same expo-
nential dependence, equation (5.1), is found whether the
BL or HCL is considered.

While the exponents of the scales ωL and ωK have
the same dependence on bare parameters, their depen-
dence on the conduction band filling nc (which itself is
determined solely by εc in strong coupling, see Eq. (3.13))
is quite distinct for the two models. This is evident al-
ready in Figure 6 but seen more clearly in Figure 7 where,
for U/V 2 = 23 (and η = 0) we show ωL and ωK vs.
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nc (their ratio being shown in the inset). For nc → 1,
ωL/ωK = F (nc) > 1 and the lattice scale is enhanced
over its AIM counterpart; while with decreasing εc (and
hence nc) ωL diminishes progressively in comparison to
ωK , such that F (nc) → 0 as nc → 0. As noted above
this general behaviour is in agreement with NRG [8] and
SBMF results [23]. It is by contrast quite distinct from re-
sults arising from a Gutzwiller variational treatment [24]
in which the lattice scale is always enhanced over its AIM
counterpart; or from approaches based on lattice exten-
sions of the non-crossing approximation (NCA) [18,19] in
which the lattice scale, while in general moderately en-
hanced compared to ωK , is essentially equivalent to the
AIM scale.

5.3 Scaling

The preceding discussion of how ωL and ωK for the two
different models depend on bare parameters has been in-
cluded in part because of the interest it has hitherto at-
tracted in the literature. As noted earlier however we re-
gard this matter as quite subsidiary in comparison to the
strong coupling scaling behaviour of the lattice model it-
self, as now considered.

First we show that in the Kondo lattice regime the
LMA indeed leads to universal scaling of single-particle
dynamics in terms of ω/ωL, for fixed εc and η. This
is illustrated for the hypercubic lattice in Figure 8, for
εc = 0.2 and η = 0. The inset to the figure shows the
f -electron spectrum π∆0D

f (ω) on an absolute scale, i.e.
vs. ω (≡ ω/t∗), for V 2 = 0.2 and two different interaction
strengths, U � 5.1 (x = 2.5) and U � 6.6 (x = 3.25). In
either case the resultant conduction band filling nc � 0.78,
in agreement with the asymptotic result equation (3.13)
which shows that nc is determined by εc alone; and like-
wise nf � 0.99. As seen from the inset the two spectra are
quite distinct on an absolute scale and dependent on the
bare model parameters, reflecting the exponential diminu-
tion of the coherence scale ωL with increasing U/V 2 as in
Section 5.2 above. The main part of Figure 8 by contrast
shows both π∆0D

f (ω) and the corresponding conduction
spectrum Dc(ω), now vs. ω′ = ω/ωL, from which collapse
to common scaling forms and hence universality is clear.
While scaling has been demonstrated here by consider-
ing fixed V 2 upon increasing U in the KL regime, it is as
expected dependent solely on the ratio U/V 2 (the same
scaling spectrum arising for fixed U upon decreasing V 2).

As discussed in Section 3, adiabatic continuity to the
non-interacting limit requires that for sufficiently low ω′
the scaling spectra should reduce to the quasiparticle
forms equation (3.11). That this behaviour is indeed recov-
ered correctly by the LMA is also seen in Figure 8, where
the resultant quasiparticle spectra are shown for compar-
ison (dotted lines, as given by Eq. (3.11) with ε̃∗f ≡ ε̃∗f (εc)
obtained from Eq. (3.12) with nf = 1): in the vicinity
of the Fermi level (ω′ = 0), and up to |ω′| � 1 or so,
agreement with the quasiparticle behaviour is essentially
perfect. For larger |ω′| by contrast, an evident departure
from this simple low-ω′ asymptotic behaviour sets in; in

particular, the quasiparticle f -electron spectra for large
|ω′| are seen to decay much more rapidly (∼ 1/|ω′|2) than
the full LMA results, which show instead slowly decay-
ing spectral tails. The latter, which as shown below de-
cay logarithmically slowly, are a key feature of dynamics
(see Figs. 11–13); reflecting genuine many-body scatter-
ing/lifetime effects, setting in for |ω′| � 1 − 10 and dom-
inating the scaling spectra (as well as transport proper-
ties on corresponding temperature scales, see e.g. [34,35]).
Here we note in passing that scaling spectra arising from
a SBMF approximation are just the quasiparticle forms
themselves, and are evidently deficient except for the low-
est energy scales; and similarly that dynamics arising from
modified (iterated) perturbation theory [16,17] amount to
little more than quasiparticle form, and similarly lack non-
trivial high-energy scaling behaviour [35]. We also add
that the spectral substructure seen in Figure 8 just above
the upper edge of the gap is not a numerical artefact, and
using the LMA self-energies can in fact be understood
physically in terms of correlated ‘strings’ of f -electron
spin-flips on distinct lattice sites. It is however destroyed
thermally on temperature scales which are a small frac-
tion of ωL itself (as will be shown in subsequent work),
and as such is but a minor feature of dynamics that we do
not pursue further here.

The spectra shown in Figure 8 display an evident gap
lying slightly above the Fermi level (strictly a pseudogap
for the HCL), as found also in approaches based on lattice
extensions of the NCA [18–20]. That such behaviour arises
is to be expected, for it occurs likewise in the quasipar-
ticle spectra equations (3.11) (see also the discussion at
the end of Sect. 2.1). Note however that this gap become
‘fully developed’ only in the strong coupling Kondo lattice
regime; for weaker interaction strengths outside the scal-
ing spectrum it is by contrast incompletely formed and
evident only as a weaker pseudogap, as seen clearly e.g.
in Figure 5. But for sufficiently strong coupling we find
that a well developed gap always arises (as the quasipar-
ticle forms would suggest). Such behaviour is also found
in recent NRG calculations [8] for nc ∼ 1, but not for
significantly lower conduction band fillings – see e.g. Fig-
ure 7 of [8] for Dc(ω) with nc = 0.6 where, by contrast,
only weaker pseudogap behaviour is evident. However the
spectrum e.g. in Figure 7 of [8] is clearly not close to strong
coupling behaviour; as evidenced both from the fact that
the Dc(ω) shown there departs significantly from the free
conduction band envelope well into non-universal energy
scales O(t∗), and because the quoted nc = 0.6 is far from
its asymptotic strong coupling value of nc = 0.48 (from
Eq. (3.13) above) for the bare parameters specified. Fur-
ther resolution of this matter is clearly required, but we
suspect that the parameter regime considered e.g. in Fig-
ures 6, 7 of [8] was not sufficiently strong coupling to un-
cover a well developed spectral gap.

The scaling spectra shown in Figure 8 refer specifi-
cally to ‘LMAI’ as detailed in Section 4.3, on which we
focus in this paper. In Figure 9 however we compare
the resultant f -electron scaling spectra π∆0D

f (ω) with
those arising from ‘LMAII’, where (see Sect. 4.3) the
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Fig. 9. Comparison of f -electron scaling spectra arising from
LMAI (solid line) and LMAII (dashed line), as explained in
text: π∆0D

f (ω) vs. ω/ωL for εc = 0.2 and η = 0. The two
levels of LMA yield essentially coincident scaling spectra.

polarization propagators entering the LMA self-energies
are further renormalized in terms of the host/medium
propagators {G̃σ(ω)}; again for the HCL with εc = 0.2
and η = 0. The inset shows the LMAI/II comparison out
to ω′ = 10, while the main figure extends to much larger
scales. And the two spectra are seen to be essentially co-
incident on all ω′ scales (as they ought to be if the LMA
captures adequately the scaling spectrum).

Figure 8 above illustrates that universal spectral scal-
ing, independent of U and V 2, arises for fixed εc and η
which embody respectively asymmetry in the conduction
band and f -levels. This we find to be quite general: Dc(ω)
and/or π∆0D

f (ω) exhibit scaling as an entire function of
ω′ = ω/ωL only for fixed (εc, η), i.e. distinct scaling spec-
tra arise for different (εc, η). Much more subtly however,

the εc- and η-dependences of the scaling spectra depend
upon the ω′-regimes considered, as now explained. We
begin with the simple case of low-ω′. As pointed out in
Section 3, the quasiparticle spectra equation (3.11) imply
that — in their ω′-regime of validity — the scaling spec-
tra should actually be independent of the f -level asym-
metry η. That this is recovered within the LMA is seen
in Figure 10 for the HCL where, for fixed εc = 0.3, the
f -electron scaling spectra π∆0D

f (ω) are shown for three
different f -asymmetries η = 0, 0.2, 0.4. For |ω′| � 1, the
regime where the quasiparticle forms hold, the LMA scal-
ing spectra are indeed seen to be independent of η; while
for larger-|ω′| by contrast, an η-dependence to the spec-
tra is evident (and discussed further below). Likewise, for
|ω′| � 1, the quasiparticle forms equation (3.11) show that
the scaling spectra depend explicitly on εc, as well as on
the underlying lattice itself (embodied in the specific form
for ρ0(ω)).

But what of higher energies in the scaling spectra?
Here as we now show the low-ω′ situation above is re-
versed: the high-energy scaling behaviour of the f -electron
spectrum is dependent on the asymmetry η, but indepen-
dent of both εc and the underlying host lattice; the latter
in turn being intimately related to the emergence of ef-
fective single-impurity physics in the high-energy scaling
behaviour of the PAM.

To see this, Figure 11 (for the HCL) shows π∆0D
f (ω)

vs. ω′ = ω/ωL up to |ω′| = 500, for η = 0 and three
different εc = 0, 0.3, 0.5 (progressively diminishing con-
duction band filling nc); the particular results shown hav-
ing been obtained explicitly for U � 6.6 (x = 1

2U |µ| =
3.25) and V 2 = 0.2. Looking at the negative-ω′ side in
particular, it is clear that the slowly decaying spectral
‘tails’ are indeed asymptotically common for the different
εc’s. On the positive-ω′ side there might appear from the
figure to be a residual weak dependence of the spectral
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f (ω) vs. ω′ = ω/ωL for the HCL up to |ω′| =

500, for η = 0 and three different εc = 0 (solid line), 0.3 (dashed
line) and 0.5 (point dash); obtained explicitly for U � 6.6 and
V 2 = 0.2. Inset: π∆0D

f (ω) vs. ω′ for fixed εc = 0.3 with
increasing interaction strength x = 1

2
U |µ| = 2.0 (solid line),

2.5 (double point dash) and 3.25 (long dash); the true scaling
limit is also indicated (dotted line). Full discussion in text.

tails on εc. That however is simply a reflection of the nat-
ural fact that the value of U/V 2 required to reach the full
asymptotic scaling spectra is dependent upon εc. This is il-
lustrated further in the inset to Figure 11, which for fixed
εc = 0.3 shows (on an expanded scale) the evolution of
the scaling spectrum with increasing interaction strength:
x = 2.0, 2.5 and 3.25. Looking at the positive ω′ side one
sees that the true scaling limit (dotted line) is steadily ap-
proached upon increasing the interaction strength, but not
reached until a U somewhat in excess of � 6.6 (x = 3.25).
On the negative ω′ side by contrast, the scaling limit is
already reached by x = 2.5 (U � 5.1) and does not change
with further increasing interaction strength. This is why

the εc-independence of the spectral tails is clearly evident
only on the ω′ < 0 side of the main figure; upon increas-
ing U however both sides of the scaling spectra show this
behaviour.

What then is the functional form of the large-|ω′| spec-
tral tails? On physical grounds one expects that on suf-
ficiently high energy and/or temperature scales, the f -
electrons in the Kondo lattice regime of the PAM should
be screened in an essentially incoherent single-impurity
fashion; and thus that effective single-impurity physics
should arise in the lattice model at high energies, quite dis-
tinct from the effects of lattice coherence evident on low-
energy scales ω/ωL ∼ O(1). For the AIM itself the spectral
tails of the local impurity scaling spectrum Dimp(ω) can
be obtained analytically within the LMA [27,28]; being
given by

π∆0Dimp(ω) ∼
1
2

(
1[

4
π ln(c|ω̃|)]2 + 1

+
5[

4
π ln(c|ω̃|)]2 + 25

)
(5.2)

(shown explicitly for η = 0) where ω̃ = ω/ωK with ωK

the Kondo scale for the AIM discussed in Section 5.2, and
c a pure constant O(1) (with c � 0.41 determined numer-
ically). For ω̃ � 5 − 10 or so, equation (5.2) is known [28]
to describe quantitatively the spectral tails arising from
NRG calculations; the exact high energy scaling asymp-
tote π∆0Dimp(ω) ∼ 3π2/[16 ln2(ω/ωK)] being recovered
in particular. If effective single-impurity behaviour arises
in the PAM on energy scales encompassed by the ω′-
scaling regime, then the spectral tails thereof should have
the same scaling form as for the AIM, i.e. should be
given by

π∆0D
f (ω) ∼

1
2

(
1[

4
π ln (a |ω′|)]2 + 1

+
5[

4
π ln (a |ω′|)]2 + 25

)
(5.3)

with ω′ = ω/ωL and a a constant O(1). Note that such
comparison requires neither a knowledge of how the low-
energy scales for the two distinct models (ωL and ωK) de-
pend on the bare material parameters, nor any assumption
that the Kondo scale for the AIM itself is at all relevant to
the PAM; points to which we return again in Section 5.4.

Equation (5.3) indeed describes the tail behaviour of
the PAM scaling spectra, and as such establishes the con-
nection to effective single-impurity behaviour at high ener-
gies. This is shown explicitly in Figure 12 where, again for
η = 0 and εc = 0, 0.3 and 0.5 (as in Fig. 11), π∆0D

f (ω) is
shown vs. ω′ on an expanded vertical scale, and compared
to equation (5.3) (with the lattice-independent constant
a � 0.55 determined numerically). That form is clearly
seen to hold asymptotically for the different εc’s; and even
for lower ω′ the spectra display only a very weak depen-
dence on εc. Neither is it lattice dependent, the same
asymptotic tail behaviour being found to arise whether
the HCL or BL is considered; naturally so, for effective
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Fig. 12. Effective single-impurity physics arising in the PAM
scaling spectra at high energies, as explained in the text. The
PAM π∆0D

f (ω) vs. |ω|/ωL on an expanded vertical scale, for
η = 0 and εc = 0 (solid line), 0.3 (dashed line) and 0.5 (dou-
ble point dash); compared to the scaling form equation (5.3)
(dotted line, barely distinguishable in the figure).

single-impurity scaling physics should be independent of
the ‘host’ lattice.

While the discussion above has focused on varying εc

(and hence nc) for symmetric f -levels η = 0, the behaviour
found is quite general. For fixed η �= 0 the high-energy
PAM scaling spectrum is likewise independent of both εc

and the lattice type; and is again found to have precisely
the same scaling form as its counterpart for the AIM (the
generalisation of Eq. (5.2) to finite-η, specifically Eq. (5.5)
of [27]). As for the AIM [27] the resultant f -electron scal-
ing spectra are now η-dependent, as illustrated in Fig-
ure 13 where π∆0D

f (ω) is compared for η = 0 and 0.3
(and is shown specifically for εc = 0, bearing in mind that
the spectra at low-ω′ depend on εc as discussed above).
The η-dependence of the spectral tails is clearly evident,
albeit rather weakly so for positive ω′ in particular.

The above results capture the evolution of the scal-
ing spectra appropriate to the Kondo lattice regime of
the PAM, from the low-energy behaviour symptomatic of
the coherent Fermi liquid state through to the effective
incoherent single-impurity physics found to arise at high
energies — but still in the ω′ = ω/ωL scaling regime. Fi-
nally, we add that while our exclusive focus here has been
on single-particle dynamics, the results obtained naturally
have direct implications for transport and optical proper-
ties of heavy fermions; these will be considered in a sub-
sequent paper.

5.4 Discussion: Exhaustion?

The discussion of the previous section brings us to
Nozières’ issue of ‘exhaustion’ [37,38] and the question
of how a coherent Fermi liquid state forms in a concen-
trated Anderson/Kondo lattice. For a single impurity
Anderson/Kondo model, assuming [38] the only conduc-
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Fig. 13. f -electron scaling spectra π∆0D
f (ω) vs. ω′ = ω/ωL,

for η = 0 (solid line) and η = 0.3 (dashed line); shown explicitly
for εc = 0 (the scaling spectra at low-ω′ depend upon εc, see
text).

tion electrons eligible to provide Kondo screening are those
lying within ∼ ωK (≡ ‘TK ’) of the Fermi level (ω = 0),
the number of such is NS ∼ NLdc

0(0)ωK ; with NL the
total number of lattice sites (and dc

0(ω) ≡ ρ0(ω − εc) the
free conduction band dos, normalised to unity). In the
strong coupling Kondo regime, dc

0(0)ωK is of course expo-
nentially small; but NS , the number of available screening
electrons per the single impurity spin, obviously remains
macroscopically large. That situation changes drastically
in the concentrated Anderson/Kondo lattice. Now there
are NL spins (f -electrons) to screen; so the number of
electrons per f -spin available to provide Kondo screen-
ing is NS/NL ∼ dc

0(0)ωK — itself exponentially small.
That raises the issue of ‘exhaustion’ [37,38]: how so few
screening electrons lead to the formation of a coherent
Fermi liquid ground state. Nozières’ argument [38] is that
this effectively arises through a two-stage process with de-
creasing energy/temperature scale. Neglecting the RKKY
interaction, on high energy/temperature scales the local
f -spins are first Kondo screened in an essentially incoher-
ent, single-impurity fashion; while with further decreasing
energy this effective single-impurity regime crosses over
into lattice coherent behaviour through collective screen-
ing/isotropization of the f spins. Two underlying scales
are then argued to emerge: a high energy single-impurity
Kondo scale ωK corresponding to the incoherent effec-
tive single-impurity physics; and a second, lower lattice
scale ωL (≡ ‘Tc’) signifying the onset of lattice coherence.
Nozières has provided intuitive arguments [38] to suggest
that, at most, ωL ∼ dc

0(0)[ωK ]2; which, since ωK itself is
exponentially small, means that ωL and ωK are radically
distinct in scaling terms (as elaborated below). Further,
as noted by Pruschke et al. [8], Nozières’ phenomenologi-
cal arguments are not in fact particular to low conduction
band filling nc, and if correct imply two-scale exhaustion
physics should be the generic situation.
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Much work has since ensued on the question of ex-
haustion [8,11,12,17,23] via DMFT studies of the PAM
and/or KLM. Regarding scales per se there appears now
to be an approaching consensus [8,23] that ωL ∝ [ωK ]2
does not arise; but rather that ωL ∝ ωK , with a propor-
tionality dependent on the conduction band filling nc (or
equivalently εc): ωL/ωK = F (nc), with which the present
work concurs as in Section 5.2. That granted however,
it has nonetheless still been suggested e.g. in [8,23] that
away from half-filling where F (nc) < 1, a two-scale pic-
ture arises. This underlies the qualitative notion of ‘pro-
tracted screening’ from Quantum Monte Carlo/Maximum
Entropy Method studies [11,12], where the existence of
two scales is inferred because the thermal evolution of dy-
namics is slower (or ‘protracted’) for the PAM than the
AIM; and it arises likewise in the large-N mean-field study
of [23] (where the emphasis is on low conduction band fill-
ing). It is also suggested in the NRG study of [8] (Sect. 5
of [8]), although we add that the NRG results themselves
were not argued in [8] to provide evidence for relevance
of the single-impurity scale ωK to dynamics of the PAM
itself.

As is evident from the results of the previous section,
we dissent from the view of a two-scale picture (without
disagreeing with specific results obtained e.g. in [8,23]).
That deserves a careful explanation. The first point to
make here is that if two distinct scales were relevant to
the PAM/KLM, in particular to its behaviour all the way
from the coherent Fermi liquid through to effective single-
impurity physics, then there should be two distinct scaling
regimes of the model. But that could only be ascertained
by investigation of the scaling behaviour of physical prop-
erties (in the relevant strongly correlated regime); which
has not hitherto been considered.

Let us then suppose that two distinct scales arise. The
lower will be the coherence scale ωL, and (without preju-
dice as to its origin) call the higher energy scale ωH . As a
function of the bare model parameters it is taken as read
that both scales vanish asymptotically in strong coupling
(i.e. become exponentially small, well separated from non-
universal scales). Now suppose the ratio ωH/ωL → ∞
in strong coupling (which would be the case e.g. in the
Nozières exhaustion scenario [38] where ωH corresponds
to the AIM scale ωK and ωL ∝ [ωK ]2). In that case, scal-
ing of physical properties in terms of ω′ = ω/ωL (or T/ωL)
would project out to infinity energies on the scale of ωH

(as well as the usual irrelevant non-universal scales); this
is the ‘ω/ωL’ scaling regime. By contrast, scaling in terms
of ω′′ = ω/ωH would project out both non-universal scales
(to infinity as usual) and all energies on the scale of ωL or
finite multiples thereof (to zero); this is the second, ‘ω/ωH ’
scaling regime. The coherent Fermi liquid will of course be
encapsulated in the former, ω/ωL scaling regime. Regard-
ing the crossover to effective single-impurity behaviour in
the PAM/KLM, two obvious possibilities arise. (a) That
this crossover is set by the ωH scale (as in the Nozières pic-
ture). It will then arise only in the second scaling regime;
effective single impurity behaviour will not thus be evi-
dent as a function of ω/ωL. (b) That the crossover occurs

in the ω/ωL scaling regime. In that case the second puta-
tive scaling regime is irrelevant — at least to the central
issue of understanding the evolution of the PAM/KLM
from the coherent Fermi liquid through to effective single
impurity behaviour.

The behaviour hypothesised above reflects a genuine
two-scale description. But if by contrast the ratio ωH/ωL

is a constant in strong coupling then the scales ωL and
ωH are equivalent, differing only by the constant but fun-
damentally equivalent in scaling terms. In this case there
is no essential distinction between ωL and ωH , and obvi-
ously only one scaling regime. Such behaviour is of course
well known to arise e.g. in the Anderson impurity model,
where the ‘Kondo scale’ appears in many different but
equivalent guises: e.g. [2] the usual Kondo temperature
TK obtained from the impurity susceptibility, the half-
width at half maximum of the Kondo/Abrikosov-Suhl res-
onance in the single-particle spectrum, or ∆0Zimp with
Zimp the impurity quasiparticle weight. Each is propor-
tional to the other; all are manifestations of the single
underlying Kondo scale.

Within the present theory the results of Section 5.3
show that a one-scale picture arises: the evolution from a
coherent Fermi liquid to effective single-impurity physics
arises clearly when the scaling behaviour of dynamics is
considered as a function of ω/ωL (and we find no evidence
for a ‘higher’ scaling regime). Neither is such behaviour
confined to single-particle dynamics. As will be shown
in a subsequent paper the resistivity ρ(T ), including its
crossover to effective single-impurity behaviour, likewise
exhibits one-parameter universal scaling in terms of T/ωL.
In parallel to the above comments on the AIM, that does
not of course preclude the coherence scale appearing in
different but equivalent guises. For example the peak max-
imum in the resistivity, often chosen as a measure of the
low-energy scale, is not identically ωL; but the two are
simply proportional, indicative of one-parameter scaling.

One further point should be noted here. The connec-
tion to effective single-impurity physics in the PAM/KLM
established in Section 5.3 arises from comparison of the
scaling forms of the spectra for the PAM/KLM and the
AIM, i.e. as functions of ω/ωL and ω/ωK respectively.
That does not require any knowledge of how the sepa-
rate scales for the two models, ωL and ωK , themselves
depend on the bare material parameters. Neither does
it require any assumption that the Kondo scale ωK for
the single-impurity model itself is directly relevant to the
PAM/KLM (the two are after all different models). It is
nonetheless the case that, from specific study (Sect. 5.2)
of how the respective scales for the two models depend
upon the bare parameters, we find ωL/ωK = F (nc) in
agreement with previous work [8,23]; and while that be-
haviour is neither required nor relevant in establishing via
scaling the connection to effective single-impurity physics
in the PAM/KLM, it does mean that the two scales are
fundamentally equivalent if used formally as scaling vari-
ables, i.e. one may choose equivalently to use ωK to scale
the PAM spectra. Hence, while we concur with the basic
results of [8,23] for the relation between ωK and ωL, we
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Fig. 14. Weak coupling LMA f -electron spectrum (solid line) vs. ω/t∗ for the Bethe lattice, with U = 0.75 (right panel) and
U = 0.25 (left panel); and for εc = 0.2, η = 0 and V 2 = 0.2. Corresponding results from second order perturbation theory in U
are also shown (dashed lines); for the lower-U shown this is indistinguishable from the LMA spectrum.

naturally disagree with the view that a two-scale picture
arises.

We also note parenthetically that the single-scale pic-
ture found here simply obviates an apparent conundrum
raised in [8], namely how one rationalises the regime
nc ≈ 1 where ωL/ωK > 1 — the lattice coherence scale
is now larger than the single-impurity Kondo scale. As
pointed out in [8] this presents a self-evident problem for
interpretations based on the assumption that the AIM ωK

is the relevant scale for effective single-impurity physics in
the PAM/KLM, while ωL sets the scale for lattice coher-
ence. From the viewpoint of the present work however, this
is obviously not an issue; effective single-impurity physics
in the PAM/KLM arises as naturally for nc → 1 (see
also [34,35]) as it does for lower conduction band fillings
nc where ωL/ωK < 1.

The obvious conclusion from the preceding discussion
is that we find no compelling evidence for two-scale ex-
haustion. A sceptic can naturally argue that since the
present theory is approximate it is open to doubt. That is
of course true, as it is for any theory. But the evidence here
certainly points away from exhaustion and, should further
support for the idea be forthcoming, it will in our view re-
quire convincing scaling arguments to be established.

6 Concluding remarks

We have developed in this paper a local moment approach
to single-particle dynamics of the periodic Anderson
model within the framework of dynamical mean-field the-
ory, for the generic asymmetric case relevant to heavy
fermion metals. For obvious physical reasons our primary
interest has been the strongly correlated Kondo lattice
regime, of essentially localized spins nf → 1 but with
general conduction band filling nc, which the intrinsically
non-perturbative nature of the LMA renders readily ac-
cessible. The exponentially small lattice coherence scale
ωL inherent to the Kondo lattice regime leads in par-
ticular to a clean separation of low-energy (‘universal’)

and high-energy scales, and hence to universal scaling
behaviour of dynamics. This has been a central focus
of the present work and a rich description of scaling
spectra results, spanning all ω/ωL-scales. With increas-
ing ω′ = ω/ωL, dynamics are found to cross over from
the low-energy quasiparticle behaviour symptomatic of
the coherent Fermi liquid state to essentially incoher-
ent single-impurity Anderson/Kondo scaling physics at
high-ω′. The former, low-ω′ behaviour depends naturally
on both the conduction band filling and underlying lattice
‘type’. The latter by contrast depends on neither, consis-
tent with one’s physical expectation of effective single-
impurity physics; and the crossover from coherent Fermi
liquid to effective single-impurity behaviour in the PAM,
established as it is by scaling, neither presumes nor re-
quires any particular relation between the PAM coherence
scale, ωL, and the Kondo scale ωK for the corresponding
‘real’ AIM arising when only a single f -level is coupled to
the conduction band.

While our almost exclusive emphasis has been on
the strongly correlated regime we add that, as for the
Anderson impurity models considered hitherto [26,27], all
interaction strengths are nonetheless encompassed by the
LMA including simple perturbative behaviour in weak
coupling – an illustration of the latter being given in Fig-
ure 14 where, for U = 0.75 and 0.25 (with εc = 0.2, η = 0
and V 2 = 0.2) LMA results for the f -electron spectrum
π∆0D

f (ω) vs. ω/t∗ are compared to those arising from
second order perturbation theory (PT) in the interaction
U : with decreasing interaction the LMA spectrum clearly
reduces to that arising from PT, being indistinguishable
from it for the lower U shown.

The essential criteria for a successful description of
the PAM thus appear to be met by the LMA; all energy
scales, and interaction strengths from weak to strong cou-
pling, being handled in a unified theoretical framework.
Further (as mentioned in Sect. 1), a description of the
single-particle dynamics considered here is a prerequisite
to determining transport and optical properties of heavy
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fermions; which subject, including explicit comparison to
experiment, will be considered in a forthcoming paper.

We express our thanks to the EPSRC for supporting this
research.
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